Modeling 3D Shapes by Reinforcement Learning

Cheng Lin, Tingxiang Fan, Wenping Wang, Matthias Nießner ;

Abstract


We explore how to enable machines to model 3D shapes like human modelers using deep reinforcement learning (RL). In 3D modeling software like Maya, a modeler usually creates a mesh model in two steps: (1) approximating the shape using a set of primitives; (2) editing the meshes of the primitives to create detailed geometry. Inspired by such artist-based modeling, we propose a two-step neural framework based on RL to learn 3D modeling policies. By taking actions and collecting rewards in an interactive environment, the agents first learn to parse a target shape into primitives and then to edit the geometry. To effectively train the modeling agents, we introduce a novel training algorithm that combines heuristic policy, imitation learning and reinforcement learning. Our experiments show that the agents can learn good policies to produce regular and structure-aware mesh models, which demonstrates the feasibility and effectiveness of the proposed RL framework."

Related Material


[pdf]