Rotationally-Temporally Consistent Novel View Synthesis of Human Performance Video

Youngjoong Kwon, Stefano Petrangeli, Dahun Kim, Haoliang Wang, Eunbyung Park, Viswanathan Swaminathan, Henry Fuchs ;

Abstract


Novel view video synthesis aims to synthesize novel viewpoints videos given input captures of a human performance taken from multiple reference viewpoints and over consecutive time steps. Despite great advances in model-free novel view synthesis, existing methods present three limitations when applied to complex and time-varying human performance. First, these methods (and related datasets) mainly consider simple and symmetric objects. Second, they do not enforce explicit consistency across generated views. Third, they focus on static and non-moving objects. The fine-grained details of a human subject can therefore suffer from inconsistencies when synthesized across different viewpoints or time steps. To tackle these challenges, we introduce a human-specific framework that employs a learned 3D-aware representation. Specifically, we first introduce a novel siamese network that employs a gating layer for better reconstruction of the latent volumetric representation and, consequently, final visual results. Moreover, features from consecutive time steps are shared inside the network to improve temporal consistency. Second, we introduce a novel loss to explicitly enforce consistency across generated views both in space and in time. Third, we present the Multi-View Human Action (MVHA) dataset, consisting of near 1200 synthetic human performance captured from 54 viewpoints. Experiments on the MVHA, Pose-Varying Human Model and ShapeNet datasets show that our method outperforms the state-of-the-art baselines both in view generation quality and spatio-temporal consistency."

Related Material


[pdf]