StyleGAN2 Distillation for Feed-forward ImageĀ Manipulation
Yuri Viazovetskyi, Vladimir Ivashkin, Evgeny Kashin
;
Abstract
StyleGAN2 is a state-of-the-art network in generating realistic images. Besides, it was explicitly trained to have disentangled directions in latent space, which allows efficient image manipulation by varying latent factors. Editing existing image requires embedding a given image into the latent space of StyleGAN2. Latent code optimization via backpropagation is commonly used for qualitative embedding of real world images, although it is prohibitively slow for many applications. We propose a way to distill a particular image manipulation of StyleGAN2 into image-to-image network trained in paired way. The resulting pipeline is an alternative to existing GANs, trained on unpaired data. We provide results of human facesā transformation: gender swap, aging/rejuvenation, style transfer and image morphing. We show that the quality of generation using our method comparable to StyleGAN2 backpropagation and current state-of-the-art methods in these particular tasks."
Related Material
[pdf]