Adaptive Variance Based Label Distribution Learning For Facial Age Estimation
Xin Wen, Biying Li, Haiyun Guo, Zhiwei Liu, Guosheng Hu, Ming Tang, Jinqiao Wang
;
Abstract
Estimating age from a single facial image is a classic and challenging topic in computer vision. One of its most intractable issues is label ambiguity, i.e., face images from adjacent age of the same person are often indistinguishable. Some existing methods adopt distribution learning to tackle this issue by exploiting the semantic correlation between age labels. Actually, most of them set a fixed value to the variance of Gaussian label distribution for all the images. However, the variance is closely related to the correlation between adjacent ages and should vary across ages and identities. To model a sample-specific variance, in this paper, we propose an adaptive variance based distribution learning (AVDL) method for facial age estimation. AVDL introduces the data-driven optimization framework, meta-learning, to achieve this. Specifically, AVDL performs a meta gradient descent step on the variable (i.e. variance) to minimize the loss on a clean unbiased validation set. By adaptively learning proper variance for each sample, our method can approximate the true age probability distribution more effectively. Extensive experiments on FG-NET and MORPH II datasets show the superiority of our proposed approach to the existing state-of-the-art methods."
Related Material
[pdf]