SPARK: Spatial-aware Online Incremental Attack Against Visual Tracking
Qing Guo, Xiaofei Xie, Felix Juefei-Xu, Lei Ma, Zhongguo Li, Wanli Xue, Wei Feng, Yang Liu
;
Abstract
Adversarial attacks of deep neural networks have been intensively studied on image, audio, natural language, patch, and pixel classification tasks. Nevertheless, as a typical, while important real-world application, the adversarial attacks of online video object tracking that traces an object's moving trajectory instead of its category are rarely explored. In this paper, we identify a new task for the adversarial attack to visual tracking: online generating imperceptible perturbations that mislead trackers along with an incorrect (Untargeted Attack, UA) or specified trajectory (Targeted Attack, TA). To this end, we first propose a spatial-aware basic attack by adapting existing attack methods, \ie, FGSM, BIM, and C\&W, and comprehensively analyze the attacking performance. We identify that online object tracking poses two new challenges: 1) it is difficult to generate imperceptible perturbations that can transfer across frames, and 2) real-time trackers require the attack to satisfy a certain level of efficiency. To address these challenges, we further propose the spatial-aware online incremental attack (a.k.a. SPARK) that performs spatial-temporal sparse incremental perturbations online and makes the adversarial attack less perceptible. In addition, as an optimization-based method, SPARK quickly converges to very small losses within several iterations by considering historical incremental perturbations, making it much more efficient than basic attacks. The in-depth evaluation of state-of-the-art trackers (i.e., SiamRPN++ with AlexNet, MobileNetv2, and ResNet-50, and SiamDW) on OTB100, VOT2018, UAV123, and LaSOT demonstrates the effectiveness and transferability of SPARK in misleading the trackers under both UA and TA with minor perturbations."
Related Material
[pdf]