CenterNet Heatmap Propagation for Real-time Video Object Detection

Zhujun Xu, Emir Hrustic, Damien Vivet ;

Abstract


The existing methods for video object detection mainly depend on two-stage image object detectors. The fact that two-stage detectors are generally slow makes it difficult to apply in real-time scenarios. Moreover, adapting directly existing methods to a one-stage detector is inefficient or infeasible. In this work, we introduce a method based on a one-stage detector called CenterNet. We propagate the previous reliable long-term detection in the form of heatmap to boost results of upcoming image. Our method achieves the online real-time performance on ImageNet VID dataset with 76.7% mAP at 37 FPS and the offline performance 78.4% mAP at 34 FPS."

Related Material


[pdf]