Adversarial Robustness on In- and Out-Distribution Improves Explainability

Maximilian Augustin, Alexander Meinke, Matthias Hein ;

Abstract


Neural networks have led to major improvements in image classification but suffer from being non-robust to adversarial changes, unreliable uncertainty estimates on out-distribution samples and their inscrutable black-box decisions. In this work we propose RATIO, a training procedure for Robustness via Adversarial Training on In- and Out-distribution, which leads to robust models with reliable and robust confidence estimates on the out-distribution. RATIO has similar generative properties to adversarial training so that visual counterfactuals produce class specific features. While adversarial training comes at the price of lower clean accuracy, RATIO achieves state-of-the-art $l_2$-adversarial robustness on CIFAR10 and maintains better clean accuracy."

Related Material


[pdf]