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Abstract. This document supplements our main paper entitled Self6D:
Self-Supervised Monocular 6D Object Pose Estimation by providing i)
more details on the architecture, employed hyper-parameters and exper-
imental setup, ii) detailed analysis on the quality of predicted masks, iii)
illustrating additional qualitative results for all conducted experiments
and iv) results for a subset of YCB-Video. Finally, we v) provide a video,
depicting our method and showing additional results.

1 Implementation Details

1.1 More Architecture Details

As mentioned in Section 3 of the main paper, we employ different lightweight
branches to predict the following outputs from the fused FPN feature maps:
the 3D rotation R parameterized as a 4D quaternion q, the 3D translation t
constituted by the 2D projection (cx, cy) of the 3D object centroid together with
the distance z, and the visible object mask MP .

For fusion of the FPN feature maps, we first apply a convolutional layer to
reduce the dimension of each layer from 128 to 64, we then conduct bilinearly
rescaling to each layer to make them spatially equal with the largest feature map
(i.e., 60×80). Finally, we concatenate all different levels to obtain the fused FPN
feature map.

Each of our lightweight branches consists of 4 convolutional layers (except
2 for the 2D centroid) with Group Normalization [13] and Leaky ReLU [15]
having a negative slope of 0.1. The final output of each predictor is obtained by
employing either a 3 × 3 convolutional layer (mask) or a fully connected layer
employed after flattening the output of forelast layer (centroid, distance and
rotation).

In line with other works [16,7], we freeze the parameters in the first 3 stages of
the backbone, to reduce the risk of overfitting to synthetic data. We additionally
apply various augmentations to the training RGB images, similar to [9,5].

∗ Equal contribution.
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hyper-parameter λclass λbox λmask λpose α β γ η

value 1.0 1.0 1.0 10.0 0.2 1.0 0.15 100

Table 1: Employed hyper-parameters for losses.

1.2 Experimental Setup

We implemented our method in PyTorch 1.3 [8] and ran all our experiments
on a NVIDIA TitanX GPU. In the first stage, we trained our model with a
batch size of 12 for 8 epochs. During self-supervision, we trained the model for
another 100 epochs with a batch size of 3. We utilized RAdam [6] combined with
Lookahead [17] for optimization. The initial learning rate was set to 10−4 and
decayed after 72% of the training phase using a cosine schedule [3].

Employed Hyper-Parameters for Losses. Table 1 shows the employed
hyper-parameters for training with synthetic data

Lsynthetic := λclassLfocal + λboxLgiou + λmaskLbce + λposeLpose, (1)

and self-supervised training on real data

LSelf = Lvisual + ηLgeom, (2)

with

Lvisual = Lmask + αLab + βLms-ssim + γLperceptual. (3)

The hyper-parameters are empirically chosen to level the different loss contribu-
tions.

1.3 Details of Lms-ssim

In this section, we present the details of MS-SSIM loss (Lms-ssim), which is an
important part for the visual alignment (Lvisual) with respect to our proposed
self-supervision (LSelf ). The structural similarity index (SSIM) [11] for pixel p
is defined as

ssim(p) =
2µxµy + c1
µ2
x + µ2

y + c1
· 2σxy + c2
σ2
x + σ2

y + c2
= l(p) · cs(p). (4)

Thereby, SSIM is computed on blocks, with (µx, µy) and
( σ2

x σxy

σxy σ2
y

)
denoting the

corresponding means and covariance matrix with respect to p, respectively. In
practice, we employ two constants c1 = 0.01 and c2 = 0.03 for numerical stability.
In [18], the authors extend this measurement to a perceptually-motivated loss
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Ape Bvise Cam Can Cat Drill Duck Eggbox Glue Holep Iron Lamp Phone Mean

F1 score 94.44 92.04 81.57 92.51 91.60 91.51 92.17 94.82 89.57 91.02 91.31 78.16 84.52 89.63

IoU 94.72 92.45 83.41 92.88 92.08 92.03 93.76 95.02 90.35 91.90 91.80 79.13 85.39 90.38

Table 2: Detailed evaluation of predicted masks. We report the F1 score(%)
and IoU(%) on LineMOD test set.

function referring to a widely used multi-scale version of SSIM, namely MS-
SSIM. Given a dyadic pyramid of s levels, MS-SSIM can be written as

ms-ssim(p) = lαs (p) ·
s∏
j=1

cs
βj

j (p), (5)

where ls and csj are the functions defined on the right in Eq. (4) at scale s and
j, respectively. As in [18], we set α = 1, βj = 1, ∀j ∈ {1, ..., s}, and s = 5.
For convenience, given two RGB images IA and IB , we designate the MS-SSIM
between them as ms-ssim(IA, IB , s). Since, ms-ssim measure the similarity be-
tween two samples with 1 being the maximum, we rewrite the loss with respect
to MS-SSIM as

Lms-ssim := 1−ms-ssim(IA, IB , s). (6)

2 Detailed Analysis on the Quality of Predicted Masks

Since our self-supervision relies on high quality of the predicted masks from
our synthetically trained model Self6D-LB, we present the detailed quantitative
evaluation in Table 2. Specifically, we calculated F1 score and IoU between the
predicted masks and the ground-truth masks on LineMOD test set. We can
see that the predicted masks are very accurate on almost all objects, with the
average F1 score 89.63% and mIoU 90.38%. Thus we can regard the predicted
masks from Self6D-LB as a reliable self-supervision signal. Fig. 1 shows some
qualitative examples for the predicted masks on LineMOD test set.
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Fig. 1: Qualitative results for predicted masks on LineMOD test set. (Best viewed
zoomed-in, in color).

Fig. 2: Qualitative results on Cropped LineMOD. We visualize the 6D pose by
overlaying the image with the corresponding transformed 3D bounding box.
While Blue constitutes the ground truth pose, we demonstrate in Red and Green
the results before and after applying our self-supervision, respectively.
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3 More Qualitative Results

In this section, we want to present additional qualitative results for each con-
ducted experiment.

Domain Transfer. In Fig. 2, we demonstrate our results for domain trans-
fer, leveraging the Cropped LineMOD dataset [12]. While we constitute the
ground truth poses in Blue, we demonstrate in Red and Green the results before
(Self6D-LB) and after applying our self-supervision (Self6D), respectively.

6D Pose Estimation. We additionally present qualitative results for 6D pose
estimation. Notice that we again depict the ground truth pose in Blue and the
prediction before (Self6D-LB) and after self-supervision (Self6D) in Red and
Green. While the initial results are very noisy in terms of 6D pose, the self-
supervised model produces highly accurate pose estimates with respect to the
given ground truth.

The results on LineMOD Occlusion [1], HomebrewedDB [4], and LineMOD [2]
are respectively depicted in Fig. 3, Fig. 4, and Fig. 5.

Fig. 3: Qualitative results on LineMOD Occlusion. We visualize the 6D pose
by overlaying the image with the corresponding transformed 3D bounding box.
While Blue constitutes the ground truth pose, we demonstrate in Red and Green
the results before and after applying our self-supervision, respectively.
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Fig. 4: Qualitative results on HomebrewedDB. We visualize the 6D pose by over-
laying the image with the corresponding transformed 3D bounding box. While
Blue constitutes the ground truth pose, we demonstrate in Red and Green the
results before and after applying our self-supervision, respectively.
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Fig. 5: More qualitative results on LineMOD. We visualize the 6D pose by over-
laying the image with the corresponding transformed 3D bounding box. While
Blue constitutes the ground truth pose, we demonstrate in Red and Green the
results before and after applying our self-supervision, respectively.
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Self-Supervision v.s. 6D Pose Error. In the main paper, we demonstrate the
existence of a strong correlation between our self-supervised loss function and
the 6D pose accuracy. In particular, we conduct our self-supervision separately to
single images for in total 200 iterations. In Fig. 6, we illustrate additional qual-
itative results for this experiment. Despite not possessing any pose labels, we
can always compute pose estimates (Green) which are almost perfectly aligned
with the ground truth (Blue). This is even true for poses, which are badly ini-
tialized using Self6D-LB (Red). This strongly suggest that our loss function is
able to solve for the 6D pose, while actually optimizing for visual and geometric
alignment.

Fig. 6: More qualitative results on Self-Supervision v.s. 6D Pose Error. We visu-
alize the 6D pose by overlaying the image with the corresponding transformed
3D bounding box. While Blue constitutes the ground truth pose, we demonstrate
in Red and Green the results before and after applying our self-supervision to
the single image for 200 iterations, respectively.
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4 Results on YCB-Video

Self6D-LB Self6D

006 mustard bottle 73.7 88.2
007 tuna fish can 26.6 69.7
011 banana 4.0 10.3
025 mug 23.9 43.4
035 power drill 21.4 31.4

Mean 29.9 48.6

Table 3: Left : Results on YCB-Video [14] dataset. We report Average Recall (%)
of ADD-S for the top 4 objects and ADD for 035 power drill. Right : Qualitative
results.

Although being out of the scope for the main body of this work, we further
evaluated our method on a subset (5 objects) of YCB-Video [14], in order to
emphasize that Self6D can be applied to any 6D pose scenario.

We first fully supervise Self6D-LB on a mixture of synthetic RGB images
from YCB-Video and photorealistic renderings from [10]. We then self-supervise
the model on 10% of the real RGB-D images for each of these 5 objects from
the training set, however, without leveraging any 6D annotations (Self6D). Since
the first four objects exhibit rotational symmetries, we report the average recall
for ADD-S for them. For the remaining object (i.e. 035 power drill), we refer
to ADD instead, as it does not possess rotational symmetries. In line with all
other experiments, we can constitute that leveraging our self-supervision, we are
able to significantly enhance the average recall with respect to ADD(-S) for each
object (Table 3).
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