Rewriting a Deep Generative Model 19

Appendix

A Additional Editing Examples

Figures 7, 8, 9, 10, 11, and 12 show additional results of our editing method to
change a model to achieve a variety of effects across an entire distribution of
generated images. Fach figure illustrates a single low-rank change of a StyleGAN
v2 model derived from the user gestures shown in the top row. The twelve pairs of
images shown below the top row of each figure are the images that score highest
in the context direction d, out of a random sample of 1000: that is, these are
images that are most relevant to the user’s context selection. For each image,
both the output of the unmodified original model and the modified model are
shown. All changes are rank-one changes to the model, except Figure 10, which
is rank ten, and Figure 12, which is rank three.

B Solving for A Algebraically

To strengthen our intuition, here we describe the closed-form solution for A in
the linear case. Recall from Equations 13 and 15:

Wik, = v, (20)
Wy = Wy + Ad¥ (21)

In the above we have written d = C~'k, as in Eqn. 16 for berevity. Then we can
solve for both W and A simultaneously by rewriting the above system as the
following matrix product in block form:

Wy |4

(23)

In practice, we do not solve this linear system because a neural network layer is
nonlinear. In the nonlinear case, instead of using matrix inversion, A is found
using the optimization in Equation 17.

C Implementation details

Datasets To compare identical model edits in different settings, we prepare
a small set of saved editing sessions for executing an change. Each session



20 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

Copy Context Paste

Unmodified Unmodified Changed

Fig. 7: Giving horses a hat to wear. After one hat is pasted onto an example
of a horse, and after the user has pointed at four other horse heads, the model is
changed so that horses in a variety of poses, settings, shapes, and sizes all get a
hat on their head. This is not merely a re-balancing of the distribution of the
model. This change introduces a new kind of image that was not generated before.
The original training data does not include hats on horses, and the original
pretrained StyleGANv2 does not synthesize hats on any horses.

corresponds to a set of masks that a user has drawn in order to specify a region
to copy and paste, together with any number of context regions within generated
images for a model. Benchmark editing sessions are included with the source
code.

Large-scale datasets are used only for pretraining the generative models. The
generative models we use are trained on the following datasets. The face model
is trained on Flickr-Faces-HQ (FFHQ) [37], a dataset of 70,000 1024x1024 face
images. The outdoor church, horse, and kitchen models are trained on LSUN
image datasets [77]. LSUN provides 126,000 church images, 2.2 million kitchen
images, and 2 million horse images at resolutions of 256 x256 and higher.



Rewriting a Deep Generative Model 21

Copy Context Paste

Changed

=y =y

o Vg

Fig. 8: Giving horses a longer tail. Notice that the color, shape, and occlusions
of the tail vary to fit the specific horse, but in each case the tail is made longer,
as demonstrated in the pasted example.

Generators We rewrite two different generative model architectures: Progres-
sive GAN and StyleGAN v2. The Progressive GAN generator has 18.3 million
parameters and 15 convolutional layers; we edit a model pretrained on LSUN
kitchens. We also edit StyleGAN v2 [40]. StyleGAN v2 has 30 million parameters
and 14 convolutional layers (17 layers for the higher-resolution faces model). We
edit StyleGAN v2 models trained on FFHQ faces, LSUN churches, and LSUN
horses. All the model weights were those published by the original GAN model
authors. For StyleGAN v2, we apply the truncation trick with multiplier 0.5
when running the model.

Metrics To quantify undesired perceptual differences made in edits, we use
the Learned Perceptual Image Patch Similarity (LPIPS) [81] metric to compare
unedited images to edited images. We use the default Alexnet-based LPIPS
network weights as published by the original LPIPS authors. To focus the
measurement on undesired changes, we follow the method of the GAN projection



22 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

Copy Context Paste

bl

Unmodified Changed Unmodified Changed Unmodified Changed

Fig. 9: Removing main windows from churches. The modified model will
replace the central window with a blank wall, or with a wall with some different
details.

work [32] and mask out portions of the image that we intend to change, as
identified by a semantic segmentation network. For faces, we segment the image
using a modified BiSeNet [76] as published by ZLL as faceparsing-Pytorch [84]. For
churches, we segment the image using the Unified Perceptual Parsing network [73].

To quantify the efficacy of the change, we also use pretrained networks. To
detect whether a face image is similing, we use a Slim-CNN [66] facial attribute
classifier. To determine if domes have successfully been edited to other types
of objects, we again use the Unified Perceptual Parsing network, and we count
pixels that have changed from being classified as domes to buildings or trees.

User studies Human realism measurements are done using Amazon Mechanical
Turk (AMT). For each baseline editing method, 500 pairs of images are generated
comparing an edited image using our approach to the same image edited using a
baseline method, and two AMT workers are asked to judge which of the pair is



Rewriting a Deep Generative Model 23

Copy Context Paste

Unmodified Unmodified Changed

Fig. 10: Reducing the occlusion of buildings by trees. This edit removes
the trees in front of buildings. Note that the model can still synthesize trees next
to buildings.

more realistic, for a total of 1000 comparative judgements. We do not test the
fantastical domes-to-trees edit, which is intended to be unrealistic.

D Rank Reduction for Dg

In this section we discuss the problem of transforming a user’s context selection
K € RV*T (Section 4) into a constraint subspace Dg € RY*S | where the desired
dimensionality s < t is smaller than the number of given feature samples T’
provided in K.

We shall think of this as a lossy compression problem. Use P to denote the
probability distribution of the layer L — 1 features (unconditioned on any user
selection), and think of K as a discrete distribution over the user’s ¢ context
examples. We can then use cross-entropy H (K, P) to quantify the information in
K, measured as the message length in a code optimized for the distribution P. To



24 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

Copy Context Paste

Unmodified

Fig.11: Removing earrings. Removing one set of earrings generalizes to many
different types of earrings appearing in different poses.

express this information measure in the setting used in Section 3, we will model P
as a zero-centered Gaussian distribution P(k) = (27)~"/2 exp —kTC~'k/2 with
covariance C.

If we the normalize the basis using the ZCA whitening transform Z, we can
express P as a spherical unit normal distribution in the variable ¥’ = Zk. This
yields a concise matrix trace expression for cross entropy:

Let C = UXUT be the eigenvector decomposition (24)
74 012 _ -2yt (25)

K £ Zk (26)

K' 27K (27)
P(K') = (2m)"/? exp(—k""K'/2) (28)



Rewriting a Deep Generative Model 25

Context Paste

Unmodified

Changed

Fig.12: Removing glasses. Note that glasses of different shapes are removed,
and most facial structure is recovered. This is a rank-three change. Although
most of the glasses have been removed, this edit did not remove the temples (side
parts) of some glasses, and did not remove refraction effects.

1
H(K' P)= ) ~log P(E') (29)
k'eK’
1
= KTE + % log 27 (30)
k'eK'’
~ln (KK') + — log 2r (31)
2t 2t

In other words, by assuming a Gaussian model, the information in the user’s
context selection can be quantified the trace of a symmetric matrix given by
inner products over the whitened context selection.

To reduce the rank of the user’s context selection, we wish to project the
elements of K’ by discarding information along the R = N —S most uninformative
directions. Therefore, we seek a matrix Q% € RNV*E that has R orthonormal



26 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

columns, chosen so that the projection of the samples @ RQ};K " minimize cross-
entropy with P:

Q5 = argmin H(QrQLK’, P) (32)
= argmin Tr (K" QrQRQrQLK') (33)

Qr
= argmin Tr (QJI;K'K'TQR) (34)

QRr

The trace minimization Eqn. 34 is an instance of the well-studied trace opti-
mization problem [46] that arises in many dimension-reduction settings. It can
be solved by setting the columns of Q% to a basis spanning the space of the
eigenvectors for the smallest R eigenvalues of K/, K'".

Denote by Q% € RV the matrix of orthonormal eigenvectors for the S largest
eigenvalues of K/, K'T. Then we have (I — QLQi )k = QLQ5 'K, i.e., erasing
the uninteresting directions of @}, is the same as preserving the directions Q5.
This is the S-dimensional subspace that we seek: it is the maximally informative
low-dimensional subspace that captures the user’s context selection.

Once we have Q¢ within the whitened basis, the same subspace can be
expressed in unwhitened row space coordinates as:

Ds =2"Qs=2Q% (35)

E Axis-aligned rank reduction for Dg

The identification of axis-aligned units most relevant to a user’s context selection
can also be analyzed using the same rank-reduction objective as Section D,
but with a different family for P. Instead of modeling P as a Gaussian with
generic covariance C', we now model it as an axis-aligned Gaussian with diagonal
covariance X' = diag(o;). Then the optimal basis Q% becomes the unit vectors
for the unit directions e; that maximize the expected ratio

>

kEKctx

(eFk)?

2
%

(36)

In Section 5.2 this scoring is used to identify the units most relevant to watermarks
in order to apply GAN dissection unit ablation.

F Experiment Details and Results

Table 2 shows the quantitative results of comparing our method with various
baselines on editing a StyleGANv2 [40] LSUN church [77] model. For both edits,
our method modifies the 7th convolution layer of the generator, with Adam
optimizer [41], 0.05 learning rate, 2001 gradient iterations, and projecting to
a low-rank change every 10 iterations (and also after the optimization loop).



Rewriting a Deep Generative Model 27

For domes — trees, a rank 1 edit is performed. (These settings are also the
defaults provided in the user interface, and were used for video demos.) For
domes — spires, a rank 10 edit is performed.

For the StyleGANv2 FFHQ [39] edit shown in main paper 1, our method
modifies the 9th convolution layer of the generator, also with Adam optimizer
[41], 0.05 learning rate, 2001 gradient iterations, and projecting to a low-rank
change every 10 iterations (and also after the optimization loop).

For all experiments, the baseline that finetunes all weights uses the Adam
optimizer [41] with 2001 iterations and a learning rate of 104,

G Reflection Experiment Details

In Section 5.3, we found the rank-one rule reversal change for the abstract window
lighting rule as follows.

1. Generation: we use the GAN to generate 15 images in two ways, one
adding windows, and one removing windows, by activating and deactivating
window-correlated units. The window correlated units are identified using
dissection [7].

2. Annotation: a user masks illuminated regions of the 15 images far from the
windows that show reflected light that differs between the pairs.

3. Optimization: we optimize a change in the weights of the layer to reverse
the behavior of the reflected light in the masked areas, to match dark output
when there is a window and bright output when there is no window. This
optimization is constrained to one direction by using an SVD reduction to
rank one every 10 iterations.

The optimization is computed at each individual layer, and we use the layer
that achieves the lowest loss with a rank-one change: for this experiment, this is
layer 6 of the model.

H Selecting a Layer for Editing

There are two ways to view a convolutional layer: either as a computation in
which information from neighboring locations is combined to detect or produce
edges, textures, or shapes; or as a memory in which many independent feature
mappings are memorized.

In our paper we have adopted the simple view that a layer acts as an associative
memory that maps from one layer’s local feature vectors to local patches of feature
vectors in the next layer. This view is appropriate when layer representations
have features in which neighboring locations are disentangled from one another.
In practice, we find that both ProgressiveGAN and StyleGAN representations
have this property. For example, if a feature patch is rendered in isolation from
neighboring features, the network will usually render the same object as it does
in the context of the full featuremap.



28 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

In Figures 13 and 16, we measure the similarity between patches rendered in
isolation compared to same-sized patches cropped out of the full model, using
Fréchet Inception Distance (FID) [29]. Lower FIDs indicate less dependence be-
tween neighboring patches, and higher FIDs indicate higher dependence between
neighbors. These graphs show that layers 6-11 in StyleGANv2 and layers 4 and
higher in Progressive GAN are most appropriate for editing as an associative
memory. (Note that in StyleGANv2, the nth featuremap layer is the output of
the n — 1th convolutional layer, because the first featuremap layer is fixed. In
Progressive GAN, the nth featuremap layer is the output of the nth convolutional
layer.)

Figures 14 and 15 visualize individual patches rendered in isolation at various
layers of StyleGANv2, and compare those to the entire image rendered together.
Figures 17 and 18 visualize the same for Progressive GAN.

FID with random 32x32 crops FID with random 64x64 crops
50 of StyleGANv2 samples of StyleGANv2 samples
—— church —— church
40 —— kitchen 12 —— kitchen
10
030 =]
w
8
20
6
10
6 8 10 12 6 8 10 12
Layer Number Layer Number

Fig.13: FID of rendered cropped activations with respect to random crops of
StyleGANv2 generated images. In StyleGANv2, the nth convolutional layer
outputs the n + 1th featuremap layer. The layer numbers above correspond to
featuremap layers.



Rewriting a Deep Generative Model 29

Rendered
output

Rendered
layer 6
patches

Rendered 5 - = - -
layer 8 —- b
patches ~F

Fig. 14: Comparison of rendered cropped activations at various layers of Style-
GANvV2 generated LSUN church images.

Rendered
output

Rendered
layer 6
patches

Rendered
layer 8
patches

Fig. 15: Comparison of rendered cropped activations at various layers of Style-
GANv2 generated LSUN kitchen images.



30 David Bau, Steven Liu, Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba

FID with random 32x32 crops FID with random 64x64 crops
of Progressive GAN samples of Progressive GAN samples
70 —— church 14 —— church
60 —— kitchen —— kitchen
50
=]
40
30
20
10
3 4 5 6 7 8 9 3 4 5 6 7 8 9
Layer Number Layer Number

Fig.16: FID of rendered cropped activations with respect to random crops of
Progressive GAN generated images.

Rendered
output

Rendered
layer 5
patches

Rendered ; : 7 LB -
layer 7 3 4R § 3 B —+ .l," B
patches s ; =

Fig. 17: Comparison of rendered cropped activations at various layers of Progres-
sive GAN generated LSUN church images.



Rewriting a Deep Generative Model 31

Rendered
output

Rendered
layer 5
patches

Rendered
layer 7
patches

Fig. 18: Comparison of rendered cropped activations at various layers of Progres-
sive GAN generated LSUN kitchen images.



