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In the supplement, we first compare relevant datasets in Section 1. We also
cover the implementation details in Section 2. Further, we evaluate GoalNet
in Section 3 and long-term predictions on PROX in Section 4. We also show
qualitative comparison results in Section 5. Finally, we describe the network
architecture in details in Section 6. We release our dataset and include more
visual results in https://people.eecs.berkeley.edu/~zhecao/hmp/.

1 Dataset Comparison

Dataset #Clips #Frames #View per clip #Characters #Scenes Pose jittering Depth Range 3D scene

H3.6M [2] 80 3.6 M 4 11 (6M 5F) 1 0 – 6
PiGraph [8] 63 0.1 M 1 5 (4M 1F) 30 X 0 – 4 X
PROX [1] 60 0.1 M 1 20 (16M 4F) 12 X 0 – 4 X

Ours 119 1 M 14-67 50 (25M 25F) 49 0 – 200 X

Table 1: Overview of the publicly available datasets on 3D human motion.

In Table 1, we list some representative datasets on 3D human motion includ-
ing Human3.6M (H3.6M) [2], PiGraphs [8], and Proximal Relationships with
Object eXclusion (PROX) [1]. H3.6M [2] is a large-scale dataset with accu-
rate 3D pose annotations using a multi-camera capturing system. However, all
recordings were captured in the lab environment (mostly empty space) and thus
it lacks diverse human interaction with the indoor environment, e.g., sitting on a
sofa or climbing stairs. PiGraphs [8] and PROX [1], on the other hand, are ded-
icated datasets with extensive efforts for modeling the interaction between 3D
human and 3D scene. Due to extensive efforts required for manually collecting
the RGBD sequence of human activities, both datasets have a relatively small
number of frames, scenes, and characters. They are also less diverse in terms
of camera poses and background appearance (only one static camera viewpoint
for each entire video clip). As shown in our experiments (Table 1 in the main
paper), models trained on these datasets tend to be overfitting to the training
data. Their 3D human poses are also relatively noisy, e.g., temporal jittering,
due to the difficulty of obtaining accurate 3D poses in the real-world setting.

https://people.eecs.berkeley.edu/~zhecao/hmp/
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In contrast, we collect a large-scale and more diverse dataset with clean anno-
tations by developing an automatic data collection pipeline based on the gaming
engine. We diversify the camera location and viewpoint over a sphere around the
actor such that it points towards the actor. We use in-game ray tracing API and
synchronized human segmentation map to track actors. When the actor walks
outside the field of view, the camera will be resampled immediately. We believe
our synthetic dataset with clean annotations can be complementary to real data
for stable training and rigorous evaluation.

2 Implementation Details

In this section, we describe the implementation details for each module of the
model. All modules are implemented in PyTorch [6] and trained using the ADAM
optimizer [3]. We set the input image size and the heatmap size to 256×448; the
resolution of output future heatmap prediction to 64×112; all depth dimension
values are caped by 10 and normalized by a factor 4 during training. We train
all 3 modules separately and find it works better than joint training. The multi-
modal nature of this problem makes it hard to train the model with intermediate
prediction, e.g., it is not quite reasonable to supervise PathNet with ground-
truth (GT) 3D path towards the GT destination, when taking the input of a
very different destination predicted by GoalNet.

GoalNet: We use a 10−4 learning rate without weight decay. For both datasets,
we train for 2 epochs with a batch size of 128.

PathNet: We train our PathNet with ground-truth destination input, while
during inference, we use the prediction from GoalNet instead. The learning rate
is set to 2.5 × 10−4 with a 10−4 weight decay. Our models are trained for 10
epochs for GTA-IM and 6 epochs for PROX where learning rates decay by a
factor of 10 at 7th and 4th epochs, respectively. We use a batch size of 32.

PoseNet: We train the PoseNet ground-truth 3D path, while during inference,
we use the prediction from PoseNet instead. We train the model for 80 epochs
using a learning rate of 1 × 10−3, an attention dropout rate of 0.2, and batch
size 1024.

3 GoalNet Evaluation

In Table 2, we evaluate 2D future destination predictions of GoalNet. We use
the metric of Mean Per Joint Position Error (MPJPE) [2] in the 2D image space.
We compare the stochastic results sampled from GoalNet with the determinis-
tic results. We vary the number of samples during the evaluation and present
results on both datasets. Our findings are twofold. (1) Directly predicting 2D
destinations is beneficial. Our GoalNet can achieve similar performance with
the deterministic baseline using as few as 5 samples on both datasets. (2) With
more samples, our prediction performance increases monotonously. When using
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GTA-IM dataset PROX dataset

Dataset min avg±std min avg±std

Ours (deterministic) 23.7 - 27.7 -

Ours (samples=3) 25.3 41.6±10.3 30.3 38.3±7.1

Ours (samples=5) 23.6 40.3±12.7 27.7 37.2±8.3

Ours (samples=10) 17.6 34.6±14.0 24.9 35.3±9.1

Ours (samples=30) 12.2 35.4±17.2 21.7 31.3±9.7

Table 2: Evaluation of 2D goal prediction results in both dataset. We compare
our results of directly predicting 2D destination using GoalNet with those obtained by
our deterministic PathNet. We compare them in terms of the least and average error
among all samples.
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(a) predicted 3D paths
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(b) predicted 3D poses

Fig. 1: Comparison between our stochastic predictions and deterministic
predictions of long-term prediction on PROX. We show error curves of predicted
(a) 3D paths and (b) 3D poses with varying numbers of samples over varying timesteps
on GTA-IM dataset. In all plots, we find that our stochastic model can achieve better
results with a small number of samples, especially in the long-term prediction (within
2-3 seconds time span).

30 samples, our GoalNet can outperform the deterministic baseline by large mar-
gins, bringing around 40% less error on GTA-IM dataset and 20% less error on
PROX dataset.

4 Long-term Evaluation on PROX

In Figure 1, we evaluate long-term prediction results on PROX dataset as we
previously showed on GTA-IM dataset. Specifically, we show results on predicted
3D paths and predicted 3D poses using our deterministic model and stochastic
model with varying numbers of samples. We note similar trends as previously
seen on GTA-IM dataset. More interestingly, we find that our stochastic mod-
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els can beat their deterministic counterpart using only 3 samples on PROX,
compared to 5 samples on GTA-IM.

5 Qualitative Results

We show additional qualitative comparison results in Figure 2 and our long-term
stochastic predictions in Figure 3. More results on 3D path and 3D pose predic-
tion are in our video which can be found at https://people.eecs.berkeley.
edu/~zhecao/hmp/.
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Fig. 2: Qualitative comparison. We visualize the input (a), the results of VP[7]
and LTD [10] (b) and our results (c) in the ground-truth 3D mesh. The color of pose
is changed over timesteps from purple to dark blue and finally light blue. The first
example (the 1st and 2nd row) includes both top-down view and side view of the
results. From the visualization, we can observe some collisions between the baseline
results and the 3D scene, while our predicted motion are more plausible by taking the
scene context into consideration.

https://people.eecs.berkeley.edu/~zhecao/hmp/
https://people.eecs.berkeley.edu/~zhecao/hmp/
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Fig. 3: Qualitative results on long-term stochastic prediction. In each example,
we first show the input image with 2D pose histories and then our stochastic predic-
tions. In the first example (1st and 2nd row), we show five different future human
movement predictions by sampling different human “goals”. Depending on his inten-
tion, the person can choose to turn left to climb upstairs; he may also go straight
through the hallway or turn right to fetch some items off the table. For the following
each row, we show two stochastic predictions per example. Our method can gener-
ate diverse human motion, e.g., turning left/right, walking straight, taking a u-turn,
standing up from sitting, and laying back on the sofa.
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6 Network Architecture

We outline our network architectures in this section. Specifically, we define our
PathNet in Table 3, GoalNet in Table 5. For PoseNet, please refer to [9], we mod-
ified the architecture by removing the input embedding layer, output embedding
layer, positional encoding layer and the softmax layer.

Index Input Data Operator Output shape

(1) - scene image - 3× 256× 448
(2) - stacked heatmaps - (N × J)× 256× 448
(3) - goal heatmap - 1× 256× 448
(4) - initial depth. - N × 1× 1
(5) - 2D pose sequence - N × J × 2

(6) (1), (2), (3) 7× 7, stride 2 128× 128× 224

(7) (6)

[
3× 3, stride 2
3× 3, stride 1

]
256× 64× 112

(8) (7) backbone feat1. HourglassStack 256× 64× 112
(9) (8) backbone feat2. HourglassStack 256× 64× 112
(10) (9) backbone feat3. HourglassStack 256× 64× 112

(11) (8) or (9) or (10)

[
3× 3, stride 1
3× 3, stride 1

]
256× 64× 112

(12) (11) heatmap pred. 1× 1, stride 1 T × 64× 112

(13) (8) or (9) or (10)

[
3× 3, stride 2
3× 3, stride 1

]
384× 32× 56

(14) (13)

[
3× 3, stride 2
3× 3, stride 1

]
512× 16× 28

(15) (14) GlobalAvgPool 512× 1× 1
(16) (4), (5) Linear 256× 1× 1
(17) (15), (16) Linear 256× 1× 1
(18) (17) depth pred. Linear (N + T )× 1× 1

Table 3: Overall architecture for our PathNet. Each convolutional block denoted
in the bracket has an internal skip connection with appropriate strides. Each convolu-
tional operator is followed by a batch normalization and ReLU layer, except the one
before heatmap prediction. Each linear operator is followed by a layer normalization
and ReLU layer, except the one before depth prediction. We denote N as input time
frames, T as output time frames, J as the number of human keypoints. We obtain
initial depth as input by scaling the size of the human bounding box [5]. We define
HourglassStack in Table 4. After each stack, we use two separate branches for predict-
ing heatmaps and human center depth. During training, we backpropagate gradient
through all stacks, while during inference, we only use the predictions from final stack.
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Index Input Data Operator Output shape

(1) - feat. - 256× 64× 112

(2) (1)

[
3× 3, stride 1
3× 3, stride 1

]
256× 64× 112

(3) (2)

[
3× 3, stride 2
3× 3, stride 1

]
384× 32× 56

(4) (3)

[
3× 3, stride 1
3× 3, stride 1

]
384× 32× 56

(5) (4)

[
3× 3, stride 2
3× 3, stride 1

]
512× 16× 28

(6) (5)

[
3× 3, stride 2
3× 3, stride 1

]
512× 8× 14

(7) (6)

[
3× 3, stride 1
3× 3, stride 1

]
512× 8× 14

(8) (7)

[
3× 3, stride 1
3× 3, stride 1

]
512× 8× 14

(9) (8) Upsample 2× 512× 16× 28
(10) (7), (9) Sum 512× 16× 28

(11) (10)

[
3× 3, stride 1
3× 3, stride 1

]
384× 16× 28

(12) (10) Upsample 2× 384× 32× 56
(13) (4), (12) Sum 384× 32× 56

(14) (13)

[
3× 3, stride 1
3× 3, stride 1

]
256× 32× 56

(15) (14) Upsample 2× 256× 64× 112

(16) (2), (15) refined feat. Sum 256× 64× 112

Table 4: Modular architecture for one HourglassStack. We follow the design and
implementation of [4]. Each convolutional block denoted in the bracket has an internal
skip connection with appropriate strides. We use nearest upsampling operator.
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Index Input Data Operator Output shape

(1) - scene image - 3× 256× 448
(2) - stacked heatmaps - (N × J)× 64× 112

(3) (1) 7× 7, stride 2 64× 128× 224
(4) (3) MaxPool, stride 2 64× 64× 112

(5) (4)

[
3× 3, stride 1
3× 3, stride 1

]
64× 64× 112

(6) (2)

[
3× 3, stride 1
3× 3, stride 1

]
64× 64× 112

(7) (5), (6)

[
3× 3, stride 2
3× 3, stride 1

]
128× 32× 56

(8) (7)

[
3× 3, stride 2
3× 3, stride 1

]
256× 16× 28

(9) (8)

[
3× 3, stride 2
3× 3, stride 1

]
512× 8× 14

(10) (9) encoder feat. GlobalAvgPool 512× 1× 1

(11) (10) µ Linear Z × 1× 1
(12) (10) σ Linear Z × 1× 1

(13) (11), (12) z Sample from N (µ, σ) Z × 8× 14
(14) (13) 3× 3, stride 1 512× 8× 14

(15) (14)

[
3× 3, stride 1
3× 3, stride 1

]
512× 8× 14

(16) (15) Upsample 2× 512× 16× 28

(17) (16)

[
3× 3, stride 1
3× 3, stride 1

]
256× 16× 28

(18) (17) Upsample 2× 256× 32× 56

(19) (18)

[
3× 3, stride 1
3× 3, stride 1

]
128× 32× 56

(20) (19) Upsample 2× 128× 64× 112

(21) (20) decoder feat.

[
3× 3, stride 1
3× 3, stride 1

]
64× 64× 112

(22) (21) goal heatmap pred. 1× 1, stride 1 1× 64× 112

Table 5: Overall architecture for our GoalNet. Each convolutional block denoted
in the bracket has an internal skip connection with appropriate strides. Each convolu-
tional operator is followed by a batch normalization and ReLU layer, except the one
before heatmap prediction. We denote N as input time frames, J as the number of hu-
man keypoints, Z as the dimension of latent space. We set Z = 30 in our experiments.
We use nearest upsampling operator.
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