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In this supplementary material, we present more experimental results that
could not be included in the main manuscript due to the lack of space.

1 Texture loss

Although the overall shape of the hand mesh is close to the groundtruth, some

vertices can move inconsistently across time steps. To prevent this, we employ
texture consistency loss, similar to [7,8]. Specifically, we first train the Deep-
HandMesh and obtain a hand mesh of a neutral pose, which is considered as the
easiest pose to estimate. Then, the mesh is used to unwrap neutral pose RGB
images from all views of our dataset to a 1024x1024 UV texture T* using Pois-
son reconstruction [1]. We use T* as a groundtruth texture and force texture T
of each iteration to be the same with T*. T is obtained by unwrapping corre-
sponding RGB images from randomly selected Cy,t views using mesh output of
current iteration in a differentiable way [3,7]. The resolution of T is 256256,
and we resized T* to the same resolution of T. To normalize illumination, we
perform normalized cross-correlation (NCC) on each 8x8 patch of T and T*
after applying the average blur. The loss function Liey is defined as follows:

Liex = 8[|(NCC(T) — NCC(T")) 1, (1)

where ¢ is a binary tensor whose value is one if the corresponding UV coordinate
has visible RGB value. This loss function is applied to fine-tune trained Deep-
HandMesh 15 epochs. The total loss function in fine-tuning stage is L + Liex.
During fine-tuning, we used the same learning rate 107%, and it is reduced by a
factor of 10 at the 10th and 12th epochs. A,y is set to 1.

Figure 1 shows standard deviation ¢ of each pixel value on the UV space after
fine-tuning without Liex (a) and with (b). (c¢) shows o difference between (a) and
(b), which is defined as (b) subtracted by (a) (i.e., blue colors in (c) indicate o
decreased after fine-tuning). As the figures show, Ly helps to decrease o, but
not at a noticeable amount. We guess that this is because (a) already shows low
standard deviation.
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Fig. 1: Visualization of effect of Lyc,.

2 Effect of the skeleton corrective

To demonstrate the effectiveness of the identity-dependent skeleton corrective
ASg, we compare 3D joint distance error Pe,, in Table 1. The error is defined
as a Euclidean distance between P and P*, where * indicates groundtruth. The
table shows our skeleton corrective refines the skeleton of the initial hand model
successfully.

Settings Perr (mm)
Without ASg 4.82
Ours (full) 2.38

Table 1: 3D joint distance error Pe,, (mm) comparison between with and without
our identity-dependent skeleton corrective ASg.

3 Skinning weight corrective

To refine pre-defined skinning weight W, we estimate identity-dependent skin-
ning weight corrective AWj53 € RY*7 from the identity vector 3 using two
fully-connected layers. The refined skinning weight W* € RYV*” is obtained as
follows:

«  max(w,; + Aw, ;,0)
- ijl max(w, ; + Aw, ;,0) ’

*

where wy ;, W, ;, and Aw, ; denote refined skinning weight, initial skinning
weight, and skinning weight corrective of jth joint of vth vertex from W*, W,
and AWg, respectively. We clamp the refined skinning weight to be positive
value and normalize it to make the summation 1. To encourage locality like
Loper et al. [4], Aw,, ; is estimated only when w, ; # 0. Otherwise, it is set to
Zero.
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(a) without

(b) with

Fig. 2: Color-coded skinning weight (left and middle) and deformed hand mesh
(right) comparison between without and with skinning weight corrective AW g.

We trained the DeepHandMesh with an additional AWg. Figure 2 shows
color-coded skinning weight and deformed hand mesh. As the figure shows, the
skinning weight of mainly finger root parts changed, and this change results in
different skin deformation around the finger root parts. However, as there is no
groundtruth mesh, it is hard to tell which hand mesh is more realistic clearly. We
believe this skinning weight corrective AW g can be helpful when initial skinning
weight W is bad and a bottleneck of better performance.

4 Dataset description

We provide detailed descriptions and visualizations of the sequences in our newly
constructed dataset. The pre-defined hand poses include various sign languages
that are frequently used in daily life and extreme poses where each finger assumes
a maximally bent or extended. When capturing the conversational gestures,
subjects are instructed with minimal instructions, for example, waving their
hands as if telling someone to come over. The hand poses in our dataset are
carefully chosen to sample a variety of poses and conversational gestures while
being easy to follow by capture participants.

The hand pose estimator was trained on our held-out human annotation
dataset, which includes the 3D rotation center coordinates of hand joints from
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6K frames. The predicted 2D hand joint locations of each view were triangulated
with RANSAC to robustly obtain the groundtruth 3D hand joint coordinates.
The hand pose estimator used to obtain groundtruth 3D hand joint coordinates
achieves 2.78 mm error on our held-out human-annotated test set, which is quite
low. From the 3D reconstruction, we rendered groundtruth depth maps for all
camera views.

Training set. Figure 3, 4, and 5 show the pre-defined hand poses in training

set.

Belows are detailed descriptions of each sequence.

neutral relaxed: the neutral hand pose. Hands in front of the chest, fingers
do not touch, and palms face the side.

neutral rigid: the neutral hand pose with maximally extended fingers, mus-
cles tense.

good luck: hand sign language with crossed index and middle fingers.

fake gun: hand gesture mimicking the gun.

star trek: hand gesture popularized by the television series Star Trek.

star trek extended thumb: “star trek” with extended thumb.

thumb up relaxed: hand sign language that means “good”, hand muscles
relaxed.

thumb up normal: “thumb up”, hand muscles average tenseness.

thumb up rigid: “thumb up”, hand muscles very tense.

thumb tuck normal: similar to fist, but the thumb is hidden by other fingers.
thumb tuck rigid: “thumb tuck”, hand muscles very tense.

aokay: hand sign language that means “okay”, where palm faces the side.
aokay upright: “aokay” where palm faces the front.

surfer: the SHAKA sign.

rocker: hand gesture that represents rock and roll, where palm faces the side.
rocker front: the “rocker” where palm faces the front.

rocker back: the “rocker” where palm faces the back.

fist: fist hand pose.

fist rigid: fist with very tense hand muscles.

alligator closed: hand gesture mimicking the alligator with a closed mouth.
one count: hand sign language that represents “one.”

two count: hand sign language that represents “two.”

three count: hand sign language that represents “three.”

four count: hand sign language that represents “four.”

five count: hand sign language that represents “five.”

indextip: thumb and index fingertip are touching.

middletip: thumb and middle fingertip are touching.

ringtip: thumb and ring fingertip are touching.

pinkytip: thumb and pinky fingertip are touching.

palm up: has palm facing up.

finger spread relaxed: spread all fingers, hand muscles relaxed.

finger spread normal: spread all fingers, hand muscles average tenseness.
finger spread rigid: spread all fingers, hand muscles very tense.

capisce: hand sign language that represents “got it” in Italian.
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claws: hand pose mimicking claws of animals.

peacock: hand pose mimicking peacock.

cup: hand pose mimicking a cup.

shakespeareyorick: hand pose from Yorick from Shakespeare’s play Hamlet.
dinosaur: hand pose mimicking a dinosaur.

middle finger: hand sign language that has an offensive meaning.

aokay upright surfer rocker rocker front

Fig. 3: Visualization of the sequences in the training set.
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four count

indextip ringtip

pinkytip palm up finger spread relaxed finger spread normal

Fig. 4: Visualization of the sequences in the training set.

shakespearesyorick dinosaur middle finger

Fig. 5: Visualization of the sequences in the training set.
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Testing set. Figure 6 shows the conversational gestures in testing set. Belows
are detailed descriptions of each sequence.

five count: count from one to five.

five countdown: count from five to one.

fingertip touch: thumb touch each fingertip.

relaxed wave: wrist relaxed, fingertips facing down and relaxed, wave.
fist wave: rotate wrist while hand in a fist shape.

prom wave: wave with fingers together.

palm down wave: wave hand with the palm facing down.

index finger wave: hand gesture that represents “no” sign.

palmer wave: palm down, scoop towards you, like petting an animal.
snap: snap middle finger and thumb.

finger wave: palm down, move fingers like playing the piano.

finger walk: mimicking a walking person by index and middle finger.
cash money: rub thumb on the index and middle fingertips.

snap all: snap each finger on the thumb.

five count five countdown fingertip touch relaxed wave fist wave
prom wave palm down wave index finger wave palmer wave shap
finger wave finger walk cash money snap all

Fig. 6: Visualization of the sequences in the testing set.
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Figure 7 shows rendering of our constructed multi-view studio for the data
capture.

Fig. 7: Rendering of our constructed multi-view studio.
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5 Comparison with state-of-the-art methods

Comparison with MANO under the similar mesh resolution. We train
and test our DeepHandMesh with a hand model the resolution of which is similar
to that of MANO, and compare its qualitative results with those from MANO
in Figure 8. Our low-resolution DeepHandMesh uses a hand mesh model with
792 vertices, while the MANO is based on a hand mesh model with 778 vertices.
The figure shows that our DeepHandMesh provides a more realistic hand mesh
compared with MANO under the similar resolution of the hand mesh model.
Note that our DeepHandMesh is trained in a weakly-supervised way without
per-vertex loss function, while MANO is based on fully-supervised training with
per-vertex loss. When we train low resolution version of the DeepHandMesh, L2
norm regularizers are used for the correctives (i.e., ASg, AMg, and AMp).
Comparison with MANO on the dataset of MANO. We tried to train
and test our DeepHandMesh on MANO dataset [5]. However, we observed that
there are only 50 registrations available for each subject, which are not large
enough to train DeepHandMesh. Also, some of the 3D scans include an object
grasped by a hand. This makes training our system on the MANO dataset hard
because rendered groundtruth depth maps D* include those objects. Although
we tried to use the registered meshes that do not include the objects for depth
map rendering, we noticed that the rendered depth map lost high-frequency in-
formation in the original 3D scans because of the low-resolution mesh in MANO,
which makes the depth maps hard to be used as groundtruth depth maps D*.
Comparison with Kulon et al. [2]. We also tried to compare our Deep-
HandMesh with Kulon et al. [2]. They use mesh supervision when they train their
high-resolution hand model (i.e, 7,907 vertices). As there is no mesh groundtruth
in our dataset, we trained their model with the same loss functions as ours (i.e.,
Pose loss and Depth map loss). We observed that without per-vertex mesh su-
pervision, their model provides severely distorted hand mesh. We could not train
our DeepHandMesh on the Panoptic dome dataset [6] that Kulon et al. [2] used
because high-quality multi-view depth maps are not available in that dataset.
Instead, we compare hand mesh output of the same hand pose from our Deep-
HandMesh and Kulon et al. [2] trained on our dataset and the Panoptic dome
dataset [6], respectively. Although this is not a perfectly fair comparison, we
think that this can roughly show how the final outputs of each method are dif-
ferent. Figure 9 shows our DeepHandMesh provides significantly more realistic
hand mesh than Kulon et al. [2].

Comparison on publicly available datasets. As our DeepHandMesh is a per-
sonalized system, it is hard to compare with other hand models (i.e., MANO [5]
and Kulon et al. [2]) that support cross-identity on publicly available datasets.
Instead, we tried to best to provide comparisons between them on our dataset.
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(a) MANO (b) DeepHandMesh (Ours) (c) 3D Recon.
Fig.8: Estimated hand mesh comparison with MANO [5] and our Deep-
HandMesh using the hand model of the similar resolution.

(a) Kulon et al. (b) DeepHandMesh (Ours)
Fig.9: Estimated hand mesh comparison with Kulon et al. [2] and our Deep-
HandMesh. The results of Kulon et al. [2] are taken from their paper.
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6 Qualitative rendered results

We provide rendered result using texture obtained from Section 1 in Figure 10.

(a) Rendered (Ours) (b) Captured (a) Rendered (Ours) (b) Captured

Fig. 10: Comparison between our rendered image and captured image from cam-
eras.
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