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In this supplementary material we provide additional results and further
details about our method. First, in Section S1, we provide a derivation of the
steepest descent iterations in Eq. (4). Next, we present more details about our la-
bel generator, weight predictor, box encoder and decoder modules in Section S2.
Section S3 and Section S4 provide additional details about our inference and
training procedures, respectively. We include a detailed runtime analysis in Sec-
tion S5. A comparison of our approach on the YouTube-VOS 2019 validation
set is provided in Section S6. We further provide detailed ablative analysis of
our training and inference parameters in Section S7. Finally, in Section S8, we
provide additional qualitative results, including outputs generated with our box-
initialization setting, mask encoding outputs and a video presenting output seg-
mentations on a number of sequences from YouTube-VOS 2018 and DAVIS 2017
validation sets. Note that the numbering of all sections, equations, figures, and
tables in this supplementary material is prefixed with the letter ‘S’. Any number
without this prefix refer to the main paper.

S1 Derivation of Internal Learner Iteration Steps

In this section we derive the steepest decent iterations in Eq. (4) used in our
few-shot learner to minimize the loss in Eq. (3). To simplify the derivation, we
first convert the loss into a matrix formulation. We then derive expressions for
the vectorized gradient ḡ and step-length α, showing that these can be computed
using simple neural network operations.

We use the fact that the convolution between the feature map xt ∈ RH×W×C

and weights τ ∈ RK×K×C×D can be written in matrix form as vec(xt ∗ τ) = Xtτ̄ .

Here, vec is the vectorization operator, τ̄ = vec(τ) ∈ RK2CD andXt ∈ RHWD×K2CD

is a matrix representation of [xt∗]. We further define et = vec(Eθ(yt)) ∈ RHWD

as a vectorization of the label encoding andWt = diag(vec(Wθ(yt))) ∈ RHWD×HWD

is a diagonal matrix corresponding to the point-wise multiplication of the im-
portance weights Wθ(yt). We can now write Eq. (3) in matrix form as,

L(τ̄) =
1

2

∑
t

∥∥Wt(Xtτ̄ − et)
∥∥2

+
λ

2

∥∥τ̄∥∥2
. (S1)

In the steepest descent algorithm, we update the parameters by taking steps
τ̄ i+1 = τ̄ i−αiḡi in the gradient direction ḡi with step length αi. Setting r̄t(τ̄) =
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Wt(Xtτ̄ − et), the gradient is obtained using the chain rule,

ḡ = ∇L(τ̄d) =
∑
t

(∂r̄t
∂τ̄

)T

r̄t(τ̄) + λτ̄ =
∑
t

XT
t W

2
t

(
Xtτ̄ − et

)
+ λτ̄ . (S2)

We see that the gradient can be computed as,

ḡ =
∑
t

XT
t W

2
t

(
vec(xt ∗ τ)− et

)
+ λ vec(τ)

= vec

(∑
t

xt ∗T Wθ(yt)
2 ·
(
xt ∗ τ − Eθ(yt)) + λτ

)
, (S3)

where the transposed convolution xt∗T corresponds to the matrix multiplication
with XT

t . Thus,

g =
∑
t

xt ∗T
(
Wθ(yt)

2 ·
(
xt ∗ τ − Eθ(yt)

))
+ λτ . (S4)

We compute the step length αi that minimizes L in the current gradient
direction gi

αi = arg min
α

L(τ i − αḡi) . (S5)

Since the loss is convex, it has an unique global minimum obtained by solving

for the stationary point dL(τ̄ i−αḡi)
dα = 0. We set v = τ̄ i − αḡi, and use (S2) with

the chain rule to obtain,

0 =
dL(v)

dα
=
( dv

dα

)T

∇vL(v)

= (ḡi)T
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2
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+ λ(τ̄ i − αḡi)
)

= (ḡi)Tḡi − α(ḡi)T
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2
t Xtḡ

i + λḡi
)

= ‖ḡi‖2 − α
(∑

t

‖WtXtḡ
i‖2 + λ‖ḡi‖2

)
. (S6)

Thus, the step length is obtained as,

α =

∥∥ḡi∥∥2∑
t

∥∥WtXtḡi
∥∥2

+ λ
∥∥ḡi∥∥2 . (S7)

We note that,
∥∥ḡi∥∥2

=
∥∥gi∥∥2

and
∥∥WtXtḡ

i
∥∥2

=
∥∥ vec(Wθ(yt) · xt ∗ gi)

∥∥2
=∥∥Wθ(yt) · (xt ∗ gi)

∥∥2
. The step length can therefore be computed as follows,

α =

∥∥gi∥∥2∑
t

∥∥Wθ(yt) · (xt ∗ gi)
∥∥2

+ λ
∥∥gi∥∥2 . (S8)
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Fig. S1. The network architecture employed for the label generator Eθ and the impor-
tance weight predictor Wθ modules. Both modules share a common feature extractor
(gray) consisting of a convolutional layer followed by two residual blocks (yellow). The
feature extractor takes as input the ground truth segmentation mask, and outputs a
deep representation of the mask containing 64 channels. The label generator Eθ (green),
consisting of a single convolutional layer followed by ReLU activation, generates the
ground truth label for the few-shot learner using the mask features as input. Similarly,
the importance weight predictor Wθ (red), which consists of a single convolutional
layer, predicts the importance weights using the mask features as input.

S2 VOS Architecture Details

S2.1 Few-shot Label Generator Eθ and Weight Predictor Wθ

Here, we describe in detail the network architecture employed for the label gen-
erator Eθ and the importance weight predictor Wθ. The network architecture is
visualized in Figure S1. The label generator Eθ and the importance weight pre-
dictor Wθ share a common feature extractor consisting of a convolutional layer
followed by two residual blocks. The feature extractor takes as input the ground
truth segmentation mask, and outputs a deep representation of the mask. The
mask features contain 64 channels, and have a spatial resolution 16 times lower
than the input mask. The label generator module Eθ, which consists of a single
convolutional layer followed by a ReLU activation, operates on the mask features
to predict the ground truth label for the few-shot learner. Similarly, the impor-
tance weight predictor Wθ consists of a single convolutional layer and predicts
the importance weights using the mask features as input. All the convolutional
layers in the network employ 3 × 3 kernels. Note that the importance weights
Wθ(y) are squared when computing the squared error between the target model
output and the ground truth label Eθ(y) predicted by the label generator Eθ.
Thus, we thus allow Wθ(y) to take negative values.
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Fig. S2. The network architecture employed by our segmentation decoder Dθ. The
segmentation decoder takes as input the mask encoding output by the target model Tτ
(red arrow), along with the output of the four residual blocks of the backbone ResNet-
50 (black arrow). The network has a U-Net based structure containing four decoder
blocks (green) corresponding to the residual blocks in the ResNet-50 feature extractor.
The TSE module (orange) in each decoder block first projects the backbone features
to a lower-dimensional representation, which is concatenated with the mask encoding.
We interpolate the mask encodings to the same spatial size as the backbone features
before concatenations. The concatenated features are processed by three convolutional
layers followed by a residual block (yellow). The resulting features are then merged
with features from a deeper decoder module with a channel attention block (CAB) [8]
(gray). Finally, the features are processed by another residual block before being passed
to the next decoder level. The output from the final decoder block is up-sampled and
processed by convolutional layer to obtain the final segmentation mask.

S2.2 Segmentation Decoder Dθ

Here, we detail the segmentation decoder Dθ architecture, visualized in Fig-
ure S2. We adopt a similar architecture as in [7]. The decoder module takes
the mask encoding output by the target model Tτ , along with backbone ResNet
features, in order to predict the final accurate segmentation mask. It has a U-
Net based structure containing four decoder blocks corresponding to the residual
blocks in the ResNet feature extractor. In each decoder block, we first project the
backbone features into a lower-dimensional representation. Next, we concatenate
the projected feature maps with the mask encoding output by the Tτ . These are
processed by three convolutional layers followed by a residual block. The result-
ing features are then merged with features from a deeper decoder module with a
channel attention block (CAB) [8]. Finally, the features are processed by another
residual block before they are merged with features from a shallower level. The
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Fig. S3. The network architecture employed for the bounding box encoder Bθ(b0, x0).
The network takes as input a mask b0 denoting the input ground truth box, along with
a deep feature representation x0 of the image. The input mask is first downsampled
by a factor of 16 and concatenated with the image features. These are then processed
by two residual blocks (yellow). The output of the second residual block is passed to a
convolutional block which predicts the mask representation of the target object. This
mask representation is input to the segmentation decoder module Dθ to obtain the
segmentation mask for the target.

output from the final decoder module is up-sampled and projected to a single
channel target segmentation mask.

S2.3 Bounding Box Encoder Bθ

In this section we give a detailed description of the network architecture of the
box encoder module. We provide an illustration of the architecture in Figure S3.
The network takes a mask representation of the bounding box along with features
from layer3 from the backbone feature extractor as input. The mask is down-
sampled with bilinear interpolation to a 1/16th of the input resolution, to match
the size of the backbone features. The backbone features are first processed by a
convolutional layer that reduces the dimension to C = 512. Here, the weights of
this convolutional layer is shared with the projection layer for the target model.
The resulting features are first concatenated with the downsampled mask and
then fed through a residual block, which also reduces the feature dimension to 64
channels. Next, the features are processed by an another residual block, before
the final box encoding is generated by a convolutional layer. This convolutional
layer reduces the number of dimensions to coincide with number of channels in
the mask representation produced by the label generator module. The output
of the box encoder can then be processed by the decoder network to produce a
segmentation mask.
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Algorithm 1 Segmentation Mask to Target Box

Input: Mask prediction m(r) ∈ [0, 1] for every pixel r ∈ Ω := {0, . . . ,W − 1} ×
{0, . . . , H − 1} in the image, Previous target size b̂ = (b̂w, b̂h)

Output: Current target location c = (cx, cy) and size b = (bw, bh)
1: z =

∑
r∈Ωm(r) # Compute normalization factor

2: c = 1
z

∑
r∈Ω r ·m(r) # Estimate target center

3: σ2 = 1
z

∑
r∈Ω(r− c)2 ·m(r) # Estimate target size

4: b = 4σ
5: ∆size =

√
bwbh
b̂w b̂h

# Change in target size from prev. frame

6: ∆size = min(max(∆size, 0.95), 1.1) # Limit change in target size
7: b = ∆sizeb̂

S3 Inference Details

In this section, we provide more details about our inference procedure. Instead
of operating on the full image, we process only a local region around the previous
target location in each frame. This allows us to effectively segment objects of
any size. The local search region is obtained by cropping a patch that is 5 times
larger than the previous estimate of target, while ensuring the maximal size to
be equal to the image itself. The cropped region is resized to 832 × 480 with
preserved aspect ratio. An estimate of the target location and size is obtained
from the predicted segmentation mask, as detailed in Algorithm 1. The target
center is determined as the center of mass of the predicted target mask, while
the target size is computed using the variance of the segmentation mask. We
additionally prevent drastic changes in the target size between two consecutive
frames by limiting the target scale change between two frames to be in the range
[0.95, 1.1]. This allows the inference to be robust to incorrect mask predictions
in one or few frames.

S4 Training Details

Here, we provide more details about our offline training procedure. Our network
is trained using the YouTube-VOS 2019 training set (excluding the 300 valida-
tion videos) and the DAVIS 2017 training set. We sample sequences from both
datasets without replacement, using a 6 times higher probability for YouTube-
VOS, as compared to the DAVIS 2017 training set, due to the higher number
of sequences in the former dataset. Our network is trained using the ADAM [4]
optimizer.

Our final networks, that are used for state-of-the-art comparisons, are trained
using the long strategy. In this setting, the networks are trained for 150k iter-
ations in total, with a base learning rate of 10−2. The learning rate is reduced
by a factor of 5 after 40k, 95k, and 145k iterations. For the first 70k itera-
tions, we freeze the weights of our backbone feature extractor, and only train
the newly added layers. The complete network, excluding the first convolutional
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and residual blocks in the feature extractor, are then trained for the remain-
ing 80k iterations. We use a mini-batch size of 20 throughout our training. For
evaluation on the DAVIS dataset, we found it beneficial to use D = 32 output
channels in our target model. We use the same initial training schedule as for
Youtube-VOS. Additionally we fine-tune our network for 2k more iterations us-
ing only the DAVIS 2017 training set. The entire training takes 48 hours on 4
Nvidia V100 GPUs.

Due to resource constraints, we use a shorter schedule when training different
versions of our proposed approach for the ablation study. Here, we train the
network for 70k iterations, using a mini-batch size of 10. We use a base learning
rate of 10−2, which is reduced by a factor of 5 after 25k, and 50k iterations. In
this training setting, we keep the weights of the backbone feature extractor fixed
and only train the newly added layers. The entire training takes 24 hours on a
single Nvidia V100 GPU.

The bounding box encoder is trained on YouTube-VOS 2019 (excluding the
300 validation videos) and MSCOCO [5]. The mini-batches are constructed by
sampling images with twice as high probability from MSCOCO compared to
YouTube-VOS. We train the network for 50k iterations with a batch size of 8,
only updating the weights of the convolutional layers in the box encoder. We
use a base learning rate of 10−2 and reduce it by a factor of 5 after 20k and 40k
iterations.

S5 Runtime Analysis

In this section we provide a run-time analysis for our VOS algorithm. The results
are summarized in Table S1. We note that the algorithm runs in two phases; the
first frame initialization phase, where we learn the target module parameters on
the initial frame, and the inference phase applied on the subsequent test frames.
Within the initial phase, the few-shot learner takes 71.6% of the runtime and the
remainder is due to feature extraction. The impact of the initial phase on the
total runtime for the full sequence depend on the sequence length. For instance,
in a sequence with 100 frames, the initial phase accounts for 3.4% of the total
runtime. In the inference phase, updating the target module has the highest
impact on the runtime at 69.7%. Most of the remaining time is due to feature
extraction (14.4%) and the decoder (14.7%). Applying the target module on the
extracted features has almost negligible impact at 0.13%. The remaining time of
the algorithm, denoted as other in Table S1, is due to overhead processes such
as image cropping and memory management. Note that, by updating the target
module less frequently we can reduce its influence on the runtime significantly.

S6 YouTube-VOS 2019

We evaluate our approach on the YouTube-VOS 2019 validation set consisting of
507 sequences. The dataset contains 1063 unique object instances belonging to 91
object categories, of which 26 are unseen in the training dataset. The results are
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Table S1. Runtime analyis of our VOS algorithm. The two left columns show the
percentages taken by the steps of the frame initialization phase. The remainder right
columns show the percentages taken by the steps in the inference phase. In both phases,
the few-shot learner has a dominating impact on the run-time.

First frame initialization Test frame inference
Feature extractor Few-shot learner Feature extractor Few-shot learner Target model decoder other

28.4% 71.6% 14.4% 69.7% 0.13% 14.7% 1.07%

Table S2. Comparison of our approach with the recently introduced STM [6] on the
large-scale YouTube-VOS 2019 validation dataset. Results are reported in terms of
mean Jaccard (J ) and boundary (F) scores for object classes that are seen and unseen
in the training set, along with the overall mean (G). Our approach outperforms STM
with a large margin of +1.8 points in terms of the overall G score.

G(%) J (%) F(%)
Method overall seen | unseen seen | unseen

Ours 81.0 79.6 | 76.4 83.8 | 84.2
STM [6] 79.2 79.6 | 73.0 83.6 | 80.6

obtained through the online evaluation server. The benchmark reports Jaccard
J and boundary F scores for seen and unseen categories. Methods are ranked
by the overall G-score, obtained as the average of all four scores. We compare
our approach with results shown on the leaderboard of the evaluation server for
the recently introduced STM [6] method. The results are shown in Table S2. Our
approach achieves at overall G score of 81.0, outperforming STM with a large
margin of +1.8.

S7 Detailed Ablative Study

In this section, we analyze the impact different components in our architecture.
As in the main paper, our analysis is performed on the validation set of 300
sequences generated from the YouTube-VOS 2019 training set. Unless otherwise
mentioned, we use the shorter training schedule (see Section S4) for training
the networks compared in this section and the default inference parameters (see
Section 3.5) in the evaluations. The networks are evaluated using the mean
Jaccard J index (IoU).

Impact of initial backbone weights: Here, we analyse the impact of using
the Mask-RCNN [3] weights for initializing our backbone feature extractor. We
compare our approach with a baseline network which uses ImageNet [2] pre-
trained weights for initializing the backbone. The results of this comparison is
shown in Table S3. Using the Mask-RCNN weights for initializing the backbone
feature extractor provides an improvement of +1.2 in J score over the version
which uses ImageNet trained weights.
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Table S3. Impact of the weights used for initializing the backbone feature extractor.
We compare a network using Mask-RCNN weights for initializing the backbone feature
extractor with a network using ImageNet pre-trained weights. The results are reported
over a validation set of 300 videos sampled from YouTube-VOS 2019 training set, in
terms of mean Jaccard J score.

J (%)

Mask-RCNN weights 79.8
ImageNet weights 78.6

Table S4. Impact of the segmentation loss employed during training. We compare a
network trained using the Lovasz [1] loss function, with a network trained using the
binary cross-entropy loss.

J (%)

Lovasz Loss 79.8
Binary Cross-Entropy Loss 79.2

Table S5. Comparison of a network trained using the shorter training strategy (see
Section S4) with the network trained using the long training strategy. In contrast to the
shorter training strategy, the backbone feature extractor is also trained when using the
long training strategy, while employing a larger batch size. The long training however
requires 8 times more GPU hours, as compared to the shorter training.

J (%)

Short training strategy 79.8
Long training strategy 81.2

Impact of training loss: We investigate the impact of using the Lovasz [1]
loss as our segmentation loss in Eq. (5) by evaluating a version which uses the
binary cross-entropy (BCE) loss. The results in Table S4 show that using the
Lovasz loss provides as improvement of +0.6 in J score over the baseline trained
using the BCE loss.

Impact of long training: Here, we analyze the impact of using the long
training procedure, as described in Section S4. Table S5 shows a comparison
between the shorter and longer training strategy. The long training provides
an improvement of +1.4 in J score over the version using the shorter training,
albeit taking 8 times more GPU hours for training.

Impact of number of mask encoding channels D: We investigate the im-
pact of the number of output channels D in the mask encoding Tτ (x) predicted
by the target model Tτ . The J score for different values of mask encoding chan-
nels D are plotted in Figure S4. Using a larger number of channels (≥ 4) allows
the target model to output a richer representation of the target mask, leading to
an improvement of +2.0 in J score over the baseline employing a single channel.
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Fig. S4. Impact of the number of output channels D in the mask encoding Tτ (x)
predicted by the target model Tτ . We plot the J score (y-axis) computed over a
validation set of 300 videos sampled from YouTube-VOS 2019 training set for different
values of mask encoding channels D (x-axis). Using a larger number of channels (>= 4)
allows the target model to output a richer representation of the target mask, leading
to improved results over the baseline employing a single channel.

Impact of number of update iterations: We analyze the impact of number
of steepest-descent (SD) iterations N inf

update employed during inference. The anal-
ysis is performed using the final network trained using the long training strategy.
The J score for different number of update iterations N inf

update are plotted in Fig-

ure S5a. The fractional values 1
n for the update iterations N inf

update in Figure S5a
imply that a single steepest-descent iteration is performed after every n frames.
The setting N inf

update = 0 corresponds to not updating the target model param-
eters τ during inference. That is, the target model estimated using the initial
frame is used for the whole sequence. We observe that performing only a single
steepest-descent iteration in each frame significantly improves the performance
by more than 5 points in J score, compared to the version with no model up-
date. This demonstrates that our few-shot learner can quickly adapt the target
model to the changes in the scene, thanks to the fast convergence of steepest-
descent updates. The setting N inf

update = 3 provides the best performance with a
J score of 81.2. Performing a higher number of SD iterations (> 3) results in
overfitting of the target model to the training set, leading to a slight degradation
in performance.

Impact of update rate: Here, we investigate the impact of the update rate
1 − η employed when setting the global importance weights for the samples in
the few-shot training set D (see Section 3.5). Figure S5b shows the J score for
different values of the update rate 1− η. A higher update rate implies that the
recent samples get a larger global importance weights when updating the target
model τ during inference. We observe that an update rate of 0.1 gives the best
results with a J score of 81.2.
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Fig. S5. Impact of the number of steepest-descent update iterations (a), and the update
rate 1−η (b) employed during inference. In plot (a), fractional values 1

n
for the update

iterations N inf
update imply that a single steepest-descent iteration is performed after every

n frames. The results are shown in terms of the mean Jaccard J score over a validation
set of 300 videos randomly sampled from the YouTube-VOS 2019 training set.

Table S6. Impact of different evaluation modes during inference. We compare a version
in which the network operates on a local search region with a version in which the
network operates on the full image. The search region in the first version is obtained
by using the estimate of the target mask in the previous frame.

J (%)

Local search region evaluation 81.2
Full frame evaluation 80.2

Impact of maximum training set size Kmax: Here, we analyze the impact
of the maximum few-shot training set size Kmax. Figure S6 shows the J score
for different values of Kmax over the 300 sequences in our validation set. The
initial annotated sample is always included in our training set, in addition to
Kmax−1 previous frames. Thus, the setting Kmax = 1 corresponds to using only
the initial frame, while Kmax = 2 corresponds to using the initial frame and the
previous frame for updating the target model. Using a larger training set leads
to improved performance until a training set size of Kmax = 16, at which point
the performance gain begins to saturate.

Impact of evaluation mode: We analyze the impact of different modes for
running the network on the test frames during inference. We compare our ap-
proach in which the network operates on a local search region with a baseline
version in which the network operates on the full image. The search region in our
approach is obtained by using the estimate of the target mask in the previous
frame, as described in Section S3. The results of this comparison is shown in
Table S6. Operating on a local search region allows the network to better handle
small objects, leading to an improvement of +1.0 points in J score over the
baseline operating on the full image.
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Fig. S6. Impact of the maximum few-shot training set size Kmax employed during
inference. The results are shown in terms of the mean Jaccard J score over a validation
set of 300 videos randomly sampled from the YouTube-VOS 2019 training set.

S8 Qualitative Results

Qualitative Comparison: We show a qualitative comparison between our ap-
proach and STM [6] in Figure S7. In the comparison we include two frames from
each of the sequences shooter, loading, pigs and soapbox from the DAVIS 2017
validation set. These sequences contain several challenges such as occlusions,
changes in appearance and distractor objects. We observe that these challenges
are handled very differently by STM and our approach. In the shooter sequence,
STM fails to segment the gun in the late frame, while our approach successfully
segments all targets. Further, our approach struggles with segmenting the box
in the loading sequence and one of the piglets in the pigs sequence. Finally, in
contrast to our approach, STM manages to segment the thin structured handles
of the wagon in the soapbox sequence. On the other hand, STM falsely predicts
segments on the wagon with the label of the running man, while our approach
segments all targets without any major false predictions.

Label encoding: In Figure S8 we show a number of selected channels from the
labels produced by the label generator and the absolute values of the correspond-
ing importance weights. As we can see, the channels in labels model different
aspects of the target mask, such as boundaries, background and a low resolution
approximation of the mask. The weights alternate between being higher or lower
on the background compared to the foreground regions. However, there seems
to be consistently higher weighting around the edges of the target.

Bounding box initialization: In Figure S9 we show some example outputs
generated by our approach with bounding box initialization. The sequences are
sampled from YouTube-VOS 2018 and DAVIS 2017 validation sets. As these
examples demonstrate, our decoder network manages to segment the target in
the first frame (second column), given a mask representation generated by our
bounding box encoder module. This mask prediction is then used as a pseudo
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Ground truth Ours STM

Fig. S7. Qualitative comparisons between our approach and STM [6] on the sequences
shooter, loading, pigs and soapbox from the DAVIS 2017 validation set. For each se-
quence, we have selected two specific frames with distinct scene appearance.



14 Bhat, Lawin, Danelljan, Robinson, Felsberg, Van Gool, Timofte

Fig. S8. Visualization of learned mask encodings. The left most column contain the
ground truth masks with the corresponding image below. In the other columns we
show labels generated by the label generator in the top rows and absolute values of the
corresponding importance weights in the rows below.

ground truth annotation of the initial target mask in our VOS approach. Al-
though the predicted initial mask is less accurate than the ground truth annota-
tion, our approach has the ability to generate high quality segmentation masks
in the subsequent frames.
Video: We provide further qualitative results in a a video. The video contains
example segmentation outputs generated by our approach with mask initializa-
tion on sequences from YouTube-VOS 2018 and DAVIS 2017 validation sets.
The following sequences are included from YouTube-VOS 2018 validation set:

00f88c4f0a, 30fe0ed0ce, 39bce09d8d, 3f99366076, 63a68c6741, 67e397b1f2,

6a75316e99, 77bec90101, 7fb4f14054, 8e2e5af6a8, 9a38b8e463, 9c693f291b,

9ce299a510, 9fd2d2782b

The following sequences are included from DAVIS 2017 validation set:

bike-packing, blackswan, bmx-trees, dance-twirl,

drift-chicane, drift-straight, goat, horsejump-high,

judo, kite-surf, motocross-jump, soapbox
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Fig. S9. Box initialization example results. The first column shows the initial frame
with the given bounding box annotation. The second column shows the first frame
segmentation, predicted by the decoder network given a mask representation generated
by our box encoder. The right four columns show predicted segmentation masks from
our approach.
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S9 Internal Validation Set

Here, we describe the internal validation set used for our ablation study in Section
4.1 of the main paper. The validation set was constructed by uniformly sampling 300
videos from the YouTube-VOS 2019 training set. The sequences included in our vali-
dation set are listed below.

d82a0aa15b, 691a111e7c, 97ab569ff3, d4a607ad81, f46c364dca, 4743bb84a7,

1295e19071, 267964ee57, df59cfd91d, c557b69fbf, 927647fe08, 88f345941b,

8ea6687ab0, 444aa274e7, ae93214fe6, b6e9ec577f, de30990a51, acb73e4297,

6cccc985e0, ebc4ec32e6, f34a56525e, 2b351bfd7d, a43299e362, 733798921e,

feda5ad1c2, 103f501680, da5d78b9d1, 634058dda0, 34d1b37101, 73c6ae7711,

a8f78125b9, e1495354e4, 4fa9c30a45, c3457af795, fe3c02699d, 878a299541,

a1193d6490, d69967143e, d6917db4be, bda224cb25, 621584cffe, 7a5f46198d,

35195a56a1, 204a90d81f, e0de82caa7, 8c3015cccb, 4e3f346aa5, 5e418b25f9,

4444753edd, c7bf937af5, 4da0d00b55, 48812cf33e, 35c6235b8d, 60c61cc2e5,

9002761b41, 13ae097e20, ec193e1a01, d3987b2930, 72f04f1a38, 97e59f09fa,

d0ab39112e, 9533fc037c, 2b88561cf2, 6c4387daf5, e1d26d35be, 0cfe974a89,

0eefca067f, 887a93b198, 4bc8c676bb, 6f49f522ef, a9c9c1517e, 8dcfb878a8,

1471274fa7, 53cad8e44a, 46146dfd39, 666b660284, 51e85b347b, ec3d4fac00,

1c72b04b56, 2ba621c750, d123d674c1, bd0e9ed437, dd61d903df, 80c4a94706,

b4d0c90bf4, 52c8ec0373, 7bc7761b8c, 25f97e926f, e72a7d7b0b, 9f913803e9,

8bf84e7d45, a9cbf9c41b, 7abdff3086, ae13ee3d70, a68259572b, 081ae4fa44,

8d064b29e2, 41dab05200, 6024888af8, 5110dc72c0, b0dd580a89, 2ff7f5744f,

45c36a9eab, ec4186ce12, 72cac683e4, c2a35c1cda, 11485838c2, 5675d78833,

55c1764e90, bfd8f6e6c9, 7ecd1f0c69, 90c7a87887, 4f414dd6e7, 211bc5d102,

3299ae3116, 827cf4f886, 5665c024cb, 08aa2705d5, 8e1848197c, d7bb6b37a7,

9d01f08ec6, fad633fbe1, 11ce6f452e, 644bad9729, ae3bc4a0ef, b2ce7699e3,

f7e0c9bb83, 52c7a3d653, 7806308f33, fed208bfca, 9198cfb4ea, 8c469815cf,

731b825695, c52bce43db, 0d2fcc0dcd, 1917b209f2, b274456ce1, d44e6acd1d,

7e0cd25696, 8909bde9ab, 68ea4a8c3d, 69ea9c09d1, 5a4a785006, b73867d769,

f0c34e1213, 84044f37f3, 479f5d7ef6, 3cc37fd487, f8fcb6a78c, f0ad38da27,

d0c65e9e95, 3b6c7988f6, f9ae3d98b7, e4d4872dab, 14dae0dc93, 86a40b655d,

4eb6fc23a2, 15617297cc, 4b67aa9ef6, 3e7d2aeb07, 4ea77bfd15, 2719b742ab,

f04cf99ee6, 75285a7eb1, 74ef677020, c9b3a8fbda, 62d6ece152, 536096501f,

3355e056eb, 6a48e4aea8, 04259896e2, 189ac8208a, ba98512f97, 223bd973ab,

a3f51855c3, 8b4fb018b7, 0ea68d418b, 6d4bf200ad, c130c3fc0c, 8a31f7bca5,

f8b4ac12f1, f85796a921, ef45ce3035, e4f8e5f46e, d5b6c6d94a, c760eeb8b3,

0b9d012be8, 1f4ec0563d, 2df005b843, dc32a44804, 1cada35274, 4cfdd73249,

b8f34cf72e, 53af427bb2, 1329409f2a, 1b8680f8cd, 2bbde474ef, 2f5b0c89b1,

6693a52081, 684bcd8812, e1f14510fa, 72a810a799, 70c3e97e41, 7c4ec17eff,

8a75ad7924, fd77828200, 53d9c45013, 968c41829e, d39934abe3, 6e1a21ba55,

bc4f71372d, 57246af7d1, f49e4866ac, 1e1a18c45a, a14ef483ff, d92532c7b2,

aab33f0e2a, f3325c3338, 4cf5bc3e60, c98b6fe013, 619812a1a7, f8c8de2764,

6dd2827fbb, f277c7a6a4, 1ca240fede, 16e8599e94, b554843889, df0638b0a0,

d664c89912, c5ab1f09c8, d38d1679e2, 31bbd0d793, b24fe36b2a, c1c830a735,

75504539c3, a74b9ca19c, c6bb6d2d5c, 99dc8bb20b, 92c46be756, 7a626ec98d,

0891ac2eb6, 7f54132e48, c47d551843, 4122aba5f9, 5aeb95cc7d, 8ca1af9f3c,

4019231330, 8f320d0e09, 5851739c15, b69926d9fa, b132a53086, 135625b53d,
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05d7715782, e3e4134877, d3069da8bb, 747c44785c, 59a6459751, 5a75f7a1cf,

63936d7de5, d301ca58cc, 9c404cac0c, 78613981ed, d072fda75b, 390c51b987,

571ca79c71, 67cfbff9b1, 7a8b5456ca, efe5ac6901, c4571bedc8, 57a344ab1a,

d205e3cff5, 39befd99fb, 3b23792b84, 6a5de0535f, ced7705ab2, 06ce2b51fb,

dd415df125, 2f710f66bd, 0f6c2163de, e470345ede, 6b2261888d, 6671643f31,

de74a601d3, f14c18cf6a, f38e5aa5b4, 57427393e9, 6da21f5c91, 738e5a0a14,

0f2ab8b1ff, 4a4b50571c, a263ce8a87, 031ccc99b1, ab45078265, 01e64dd36a,

e0c478f775, b5b9da5364, 72acb8cdf6, c922365dd4, df11931ffe, ad3fada9d9
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