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1 BRDF Model

Essentially any differentiable BRDF model can be incorporated in our framework
to model the appearance of real-world objects. In this paper we apply a version
of the microfacet BRDF model proposed by Walter et al. [4], with simplifications
introduced by Karis [1]. Let ωo, ωi be the view and light direction, n, a, γ be
the normal, diffuse albedo and roughness. Our BRDF model is defined as:

f(ωo,ωi,a,n, γ) =
a

π
+
D(h,n, r)F (ωo,h)G(ωi,ωo, r)

4(n · ωi)(n · ωo)
(1)

where D(h,n, r), F (ωo,h) and G(ωi,ωo,h, r) are the normal distribution, fres-
nel and geometric terms respectively. These terms are defined as follows:

D(h,n, γ) =
α2

π [(n · h)2(α2 − 1) + 1]
2

α = γ2

F (ωo,h) = F0 + (1− F0)2−[5.55473(ωo·h)+6.8316](ωo·h)

G(ωi,ωo, γ) = G1(ωo,n)G1(ωi,n)

G1(ωo,n) =
n · ωo

(n · ωo)(1− k) + k

G1(ωi,n) =
n · ωi

(n · ωi)(1− k) + k

k =
(γ + 1)2

8

where we set F0 = 0.05 as suggested in [1]. Correspondingly, the final reflected
radiance fr in Eqn. 8 in the paper is computed as:

fr(ωo,ωi,n(xs), R(xs)) = f(ωo,ωi,a(xs),n(xs), γ(xs))(n(xs) · ωi) (2)

where a(xs) and γ(xs) are the diffuse albedo and roughness at xs.
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Fig. 1. Our network architecture.

Pony Girl House Disney Animals Captain

min 0.60 0.82 1.22 0.25 0.29 0.68

max 10.00 9.19 9.54 10.09 9.28 14.52

mean 5.35 7.66 5.83 7.25 6.49 6.92

Table 1. The minimum, maximum and average angles (in degrees) between the test
views in the supplementary video and their nearest training views.

2 Network Architecture

Fig. 1 shows an overview of our network architecture. Our network starts from a
512-channel encoding vector initialized using random samples from a normal dis-
tribution. The encoding vector first goes through two fully connected layers and
then is fed to different decoders to predict the global warping parameters, spa-
tially varying warping parameters, and the template volume. The global warping
parameters Wg consist of a 3-channel scaling vector, a 3-channel translation vec-
tor and a 4-channel rotation vector represented as a quaternion. The spatially
varying parameters consist of 16 warping bases {Wj}16j=1 and a weight volume
B. Similar to the global warping, each warping basis is composed of a scaling,
a translation and a rotation. The weight volume B has 16 channels and a reso-
lution of 32× 32× 32, which encodes the spatially varying weight of each basis.
Finally, the template volume V has a resolution of 128 × 128 × 128; it has 8
channels with 1 channel for opacity, 3 channels for normal, 3 channels for diffuse
albedo and 1 channel for roughness. We also transform the albedo and roughness
to the range of [0, 1] and normalize the predicted normal vectors.

3 Testing Specifications

In the supplementary video, we show renderings of the captured object under
novel viewpoints and lighting. Note that our training images are captured with
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Fig. 2. Comparison with ground truth on relighting under environment illumination.
The environment map used for rendering is shown at the bottom.
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Fig. 3. Comparison against Sitzmann et al. [3] on synthesizing novel views under col-
located lights. Our method is able to generate high-quality results with fewer artifacts.

collocated light and camera, and the relighting results in the video demonstrate
that our volumetric representation can generalize to novel lighting conditions. In
Tab. 1, we report the minimum, maximum and average angles between the test
views in the video and their nearest training views. Such a large angle difference
also shows that our deep reflectance volume generalizes well to novel views.

4 Results on Synthetic Data

In addition to the real captures, we also evaluate our method on a synthetic
dataset where we render a synthetic scene from multiple viewpoints under col-
located camera and light. We compare our view synthesis and relighting results
with the ground truth renderings. Please check the supplementary video for
comparisons.
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Fig. 4. Geometry reconstructed from Nam et al. [2].

By linearly combining the relit images under each light corresponding to pix-
els of an environment map, our method also supports rendering of the scene
under novel environment illumination. In Fig. 2 we demonstrate our environ-
ment map relighting result and compare it to the ground truth renderings with
a physically-based renderer. From the figure we can see that our method can
generate visually plausible results.

5 Comparison on View Synthesis

In Fig. 3 we show a visual comparison against the method proposed by Sitz-
mann et al. [3] on synthesizing novel views under collocated lights. Sitzmann
et al. learn a 3D-aware neural representation to encode the view-dependent ap-
pearance of captured scenes. Their method cannot model the complex geometry
and appearance of our real scenes. As we can see from the result, Sitzmann et
al. cannot synthesize novel views correctly and generates distorted images with
undesired structures. In contrast, our method is able to produce images of much
higher quality.

6 Mesh-Based Appearance Acquisition

In Fig. 4 we show the optimized geometry from Nam et al. [2]. They leverage the
state-of-the-art multi-view stereo (MVS) framework to get an initial geometry,
and further perform an optimization to refine it; however they still fail to recover
the faithful geometry for such challenging scenes where there are textureless
and thin-structured regions, thus resulting in degraded quality in reproduced
appearance, as shown in the supplementary video.
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