
TIDE: A General Toolbox for Identifying Object
Detection Errors

Supplemental Material

Table of Contents

TIDE: A General Toolbox for Identifying Object Detection Errors
Supplemental Material . 1

1 Additional Discussion . 2
1.1 Oddities of ∆AP . 2
1.2 AP0.5:0.95 . 3

2 Implementation Details . 4
2.1 Defining the Missed GT Oracle . 5
2.2 Breaking Ties in Error Assignment . 6
2.3 Models and Sources Used . 7

3 COCO Instance Segmentation Summary . 7
4 API Example . 7
5 More Misannotated COCO Ground Truth . 9

2 Supplemental Material

1 Additional Discussion

There are some minor details left out of the main submission due to space
constraints. We discuss those details here.

1.1 Oddities of ∆AP

While ∆APa correctly weights the importance of error type a, it has some
potentially unintuitive properties that we list here.

First, consider Tab. 2 in the main submission. It would be nice if the im-
provement (or negative improvement) for each error type when summed equaled
the overall improvement in AP . For instance, take the improvement row for MS
R-CNN. The improvement in AP50 is +0.2, while the sum of changes in main
errors (−(0.4− 1.5 + 0.7 + 0.3)) is +0.1. Using the special errors (FP and FN,
−(0.0 + 0.3)) would even predict worse AP50: −0.3. That is, in general

∆AP 6= −
∑
o∈O

∆Eo (1)

This isn’t a huge issue, as the relative magnitudes of each error type can still be
compared. However, it’s something that needs to be kept in mind while analyzing
performance.

Second, and a related issue is that summing the ∆APa for each error type
a does not result in 100 − AP . For instance, consider the special error types
(FP and FN), which should account for all the error in the model. If we use the
numbers from the same Tab. 2 for Mask R-CNN (first row), adding the AP50

with ∆APFP and ∆APFN (58.1 + 15.9 + 17.8) yields 91.8, not 100. Similarly, for
YOLACT++ we have (51.8 + 10.7 + 27.7) 90.2, which is again not 100. More
concretely, for O = {o1, . . . , on} this means in general

AP +∆APo1 + . . .+∆APon 6= 100 (2)

This is a direct result of not computing errors progressively (Fig. 2 in the
main submission), where the errors sum to 100, and in fact is an odd property of
AP explained in Sec. 2.3 of the main submission: fixing multiple errors at once
gives a bigger boost in mAP than fixing each error on their own.

Both of these issues have an underlying cause that we can see if we write out
the same expression as in Eq. 2 but with progressive error:

AP +∆APo1,...,on = 100 (3)

which begs the question, how can we relate ∆APa +∆APb to ∆APa,b? It turns
out that they differ by (∆APa −∆APa|b).

To show this, we first split each term into its definition:

∆APa,b = APa,b −AP ∆APa +∆APb = APa +APb − 2AP (4)

Supplemental Material 3

Table 1: Errors over thresholds. Evaluating the error types at different fore-
ground IoU thresholds (tf) using Mask R-CNN detections on COCO.

tf AP Ecls Eloc Eboth Edupe Ebkg Emiss EFP EFN

0.5 61.7 3.3 6.2 1.2 0.2 4.1 7.0 16.6 15.3
0.6 57.1 2.7 10.6 1.2 0.0 3.5 7.3 16.5 18.3
0.7 49.7 2.1 18.1 0.9 0.0 2.7 7.0 15.0 23.9
0.8 36.1 1.3 31.6 0.6 0.0 1.4 6.9 12.9 32.1
0.9 12.0 0.2 55.1 0.1 0.0 0.3 4.9 9.7 33.2

Then we rearrange the terms for the left equation to get it in terms of AP:

AP = APa,b −∆APa,b (5)

Then, substitute 1 AP into the right equation in Eq. 4 to get

∆APa +∆APb = APa +APb −AP −APa,b +∆APa,b (6)

We can then group APa − AP and −(APa,b − APb) and substitute them with
the definitions for ∆APa and −∆APa|b respectively (if collecting the terms a
different way we could swap a and b here). This leaves us with the following:

∆APa +∆APb = ∆APa,b + (∆APa −∆APa|b) (7)

Since the ∆APa|b > ∆APa in most cases (following the reasoning given in
Sec. 2.3), this means ∆APa,b > ∆APa +∆APb in most cases.

Oddities like this are why such great care needs to be taken when working
with AP , since the properties it has are not intuitive.

1.2 AP0.5:0.95

The primary metric used in the COCO and CityScapes challenges is AP 0.5:0.95,
or the average of mAP across 10 IoU thresholds starting from 0.5 to 0.95 with
increments of 0.05. All our analysis in our main submission is done with an IoU
threshold (tf) of 0.5, but it’s worth looking at higher thresholds because of this
metric.

In Tab. 1 and Fig. 1 we evaluate the error types over the IoU thresholds 0.5,
0.6, 0.7, 0.8, and 0.9 using Mask R-CNN detections on COCO. As expected, the
error type that responds most strongly to higher IoU thresholds is localization
error (Fig. 1a), since increasing the threshold just makes it harder to localize to
the ground truth. We also see that false negatives start mattering more than
false positives at higher IoU thresholds (Fig. 1b).

Thus, COCO and CityScape’s average over IoU threshold metric is biased
heavily toward localization errors and to a lesser extent false negatives. This
is why Mask Scoring R-CNN, which rescores its masks in a way that better

4 Supplemental Material

(a) Main Error Types

(b) Special Error Types

Fig. 1: Errors over thresholds. The values for these plots are reproduced in
Tab. 1. This is using Mask R-CNN detections on COCO.

calibrates localization at the expense of other error types (see Tab. 2 in the main
submission), is so effective. Their approach makes no significant difference at
AP50, but at the higher thresholds that are biased more toward localization, they
get a huge boost, leading to a big improvement in AP 0.5:0.95. Moreover, many
aspects of YOLACT / YOLACT++ are much worse than other methods, which
we can see by its detector performance in Fig. 4, but it localizes masks on par
with other instance segmenters which give it a boost in performance in AP 0.5:0.95

for instance segmentation. Whether this is a desirable trait for a metric is up to
the dataset maintainers, but designers need to take this into consideration when
prioritizing areas of improvement.

2 Implementation Details

Here we discuss design choices and implementation details that weren’t able to
fully explain in the main submission.

Supplemental Material 5

Fig. 2: Possible Definitions for Missed GT. Defining the oracle for missing
GT is difficult, so it’s important to choose a good definition. Here we compare
ways of choosing the score for a new true positive versus just removing GT (what
we use in our main submission).

2.1 Defining the Missed GT Oracle

As we noted in the main submission, creating a definition for “fixing” false
negatives is a tricky subject. We outlined two strategies to do so: remove true
negatives (i.e., lower NGT) or add true positives (i.e., add a detection). We chose
the former because the latter required us to choose a score for this new detection.
In this section, we elaborate why choosing the right score is difficult and may
lead to false conclusions. We do this by evaluating several reasonable techniques
for choosing this score.

First, we could set the score to some fixed value. Two obvious choices are 1
(to put all the new detections at beginning of the sorted list) and −∞ (to put
all new detections at the end of the list). As evident in Fig. 2, setting the score
to 1 produces very high values for the missing GT and likely overweights their
contribution. In effect, setting the score to 1 assumes that whatever predictions
the model add to catch this missed GT will be perfectly calibrated. Since the
predictions for the other error types aren’t perfectly calibrated, this results in
the relative weight for missed GT being too high.

On the other hand, setting the score to −∞ essentially uses the lowest
score output by the model. This doesn’t just assume the model will have poor
calibration for this GT, but it also depends heavily on how many low scoring
detections the model produced. In order to boost AP , many detectors (HTC,
FCOS, TridentNet, RetinaNet) produce a lot of low-scoring detections (since
COCO allows 100 detections per image). This results in this version of missed
GT being disproportionately small for these models as compared to the rest.

Another, and perhaps more reasonable, method for determining the score
samples from the existing predictions’ scores. In Fig. 2 we test setting the score
to the mean of the predicted scores and setting the score to that of an existing
prediction sampled uniformly at random. However, as we see in Fig. 2, both
methods produce the same skewed results as simply setting the score to −∞
does (e.g., Mask R-CNN and RetinaNet for removing GT and setting the score
to 1 are nearly identical, but wildly different for the other definitions).

6 Supplemental Material

Fig. 3: Ties in Error Assignment. A possible tie in error assignment is illus-
trated here (= false positive detection; = ground truth). The prediction is a
classification error for the cat and a localization error for the dog. We break ties
like this by assigning a localization error with the dog. Note that this is different
to the both cls+loc error, as these are errors with two entirely separate ground
truths.

In general, we can’t trust the distribution of scores given by the detector
as accurate, since some detectors like to use all of the available bandwidth of
detections (100 per image for COCO) by flooding the predictions with low scoring
detections that have some chance of being correct. This produces skewed results
when defining the score as anything that depends on these low scoring detections
(−∞, mean, sample). Thus, we can’t tell what the score for the new prediction
should be, leaving us with the only option of defining the missed GT oracle as
removing true negatives.

2.2 Breaking Ties in Error Assignment

Some situations can cause a predicted box to have two separate errors with two
different ground truth. This is because when computing IoUmax for classification
error, we use GT of a different class, while for localization we use the GT of
the same class. Thus, it’s possible for a given prediction to have a localization
error w.r.t. one GT and a classification error w.r.t. another GT (as illustrated in
Fig. 3).

While these ties don’t happen often (∼ 0.78% of Mask R-CNN predictions on
COCO), it is important to deal with them in a defined way. In the case presented
in Fig. 3, we prioritize localization error over classification error, choosing to
trust the classification of the model more than its localization. This choice is
largely arbitrary (there are arguments for both) but needs to be made. For all
other tie breakers, we follow the order we define the error types.

Note that this tie breaking is not to be confused with computing errors
progressively. In our implementation, we first assign an error type to each false

Supplemental Material 7

positive and false negative, and then only after all positives and negatives are
accounted for do we compute ∆AP .

2.3 Models and Sources Used

We used off-the-shelf models for each method tested and didn’t train any new
models. Some methods directly provided a COCO evaluation JSON file which
we could use directly with our toolbox, while others required us to run the code
ourselves. For each model, we list the method name, the model description (as
describes the relevant weights file), a link to the code we used, and whether
or not the method provided a COCO JSON (i.e., whether we didn’t need to
evaluate the model ourselves or not) in Tab. 2. Note that in general we use
the Resnet101 version of each model without any bells and whistles. The one
exception is YOLACT++, since it uses deformable convolutions while the rest of
the models don’t, so we use its Resnet50 model to compensate.

Table 2: Model Sources. The sources for the models we used in our analysis.

Method Model Description Implementation JSON?

Mask R-CNN R-101-FPN, 2x (35861858) detectron 4

MS R-CNN ResNet-101 FPN maskscoring rcnn 7

HTC R-101-FPN mmdetection 7

TridentNet TridentNet, 1x (ResNet-101) simpledet 7

RetinaNet R-101-FPN, 2x (36768840) detectron 4

FCOS FCOS R 101 FPN 2x FCOS 7

YOLACT++ Resnet50-FPN yolact 7

3 COCO Instance Segmentation Summary

In Fig. 4 we show the summary plots for COCO instance segmentation that
didn’t make it into the main submission. For convenience, we also reproduce the
detection results from the main submission.

4 API Example

In order to express the ease of use of our toolkit, we include here an example of
how one can generate a summary figure as in Fig. 4. The relevant python code is
included below.

https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md
https://github.com/zjhuang22/maskscoring_rcnn
https://github.com/open-mmlab/mmdetection/tree/master/configs/htc
https://github.com/TuSimple/simpledet/tree/master/models/tridentnet
https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md
https://github.com/tianzhi0549/FCOS
https://github.com/dbolya/yolact

8 Supplemental Material

(a) Detection Results

(b) Instance Segmentation Results

Fig. 4: Summary of errors on COCO. The same as Fig. 3 in the main
submission but with instance segmentation included.

from toolkit.quantify import MetricsEval
from toolkit.datasets import COCO

Load the dataset and the model's predictions. The format is
the same as COCOEval , so this is a drop -in replacement.
dataset = COCO()
predictions = dataset.load_predictions('path/to/json')

All hyperparemeters are variables that can be changed.
metrics = MetricsEval(pos_threshold =0.5, mode=MetricsEval.MASK)

Run the evaluation of error types. Multiple runs can be done
with the same metrics object so that they can be compared.
run = metrics.evaluate(predictions , name='Model Name')

Plot the summary figure described above.
If we had multiple runs , this would plot them side -by-side.
metrics.plot_summary ()

There are a couple of important differences that separate the design of our API
from other toolkits. First, our API is very modular. The dataset and prediction
loading format can easily be swapped out so that we can support future datasets
as well. Second, we don’t output all possible figures at once. The typical use is
to first run the metric evaluation, then plot the summary of errors, then dive

Supplemental Material 9

deeper in specific deficiencies noticed in the summary. Not only does this save
the user from being overloaded with redundant and mostly useless information,
but it also allows us and the broader community to implemenent new modes of
analysis that can be easily slotted in to the existing code. Finally, we structure
the API around comparison. One metric eval holds multiple runs, whether that
be multiple different models, multiple ablations of the same model, or the same
model on multiple datasets. The main goal of this toolkit is to make comparison
easy and meaningful, which is something that is mostly absent in other toolkits.

5 More Misannotated COCO Ground Truth

As discussed in the main section, we find that a surprising number of the most
confident errors are due to misannotated ground truth. In our study, we looked
at the top 100 most confident errors in each error type (using a uniform random
sample for Missed GT since those errors don’t have an associated prediction)
and pick out all the missannotated and ambiguously annotated examples from
them. An important point to note is that COCO doesn’t require their annotators
to annotate all instances in an image. Where they don’t annotate something,
they’re supposed to mark the whole area as a “crowd” annotation (i.e., for each
crowd, they need only annotate a few instances and then anything else in the
crowd annotation during evaluation will be ignored). We find that issues with
crowd annotations are very common in COCO, such as not including a crowd
annotation when there should be one or drawing a crowd annotation but then
not marking the flag for crowd annotations.

This leads us to seperate all the misannotations into 3 categories: missing
crowd label (i.e., the crowd annotation existed, but it wasn’t flagged as a crowd
annotation and thus got treated like a regular annotation), bad annotation (e.g.,
wrong class, box drawn incorrectly, or the GT didn’t exist when it should have),
and ambiguous (otherwise questionable annotations such as action figures not
annotated as people, reflections of object not annotated, etc.).

We include all the misannotations we found for Mask R-CNN this way in the
misannotated gt folder provided alongside this document sorted by error type
(except for duplicate detections, where this isn’t applicable) and misannotation
type. If applicable (everything but missed) the false positive prediction is in blue,
if applicable (cls, loc, missed) the false negative is in red, the rest of the GT is in
green, and the boxes labeled as crowds are in gray. We summarize our findings in
Tab. 3. Localization, both, and background errors all have a worrying number of
misannotated GT, with the both error type having a whole two thirds of the 100
most confident as misannotated! Furthermore, simply forgetting to mark a crowd
box as a crowd is a surprisingly common mistake that causes localization errors.
This suggests that very simple steps can be taken to improve the quality of these
annotations (just fix this mislabeled crowds and draw crowds around those that
don’t have them). This might be a good idea for future work to persue.

Another crucial note is that these missannotations exist in the training set
too. This means for instance that all the boxes that should be marked as crowds

10 Supplemental Material

Table 3: Distribution of Misannotations on COCO. We sample the top 100
errors from each error type (and randomly for missed) and bin the misannotations
we found into one of three categories. Because these are the most confident
examples, they have a very large effect on overall mAP .

Cls Loc Both Bkgnd Missed

Crowd Flag 1 22 1 3 0
Bad Annotation 1 8 36 34 8

Ambiguous 5 2 29 20 3

Total 7 32 66 57 11

but aren’t are being used in our models as training examples. Qualitatively,
a common error detectors make is when they lump two or more objects into
the same detection. This type of error isn’t exclusive to one method (we’ve
observed it in FCIS, Mask R-CNN, and YOLACT, which all are vastly different
architectures). Perhaps this type of error is caused by bad training data. Certainly
this type of misannotation seems very common, so we can’t really confidently
pin those types of errors as our detectors’ fault.

Thus as a meta point, it’s really important that we be careful about how
much we trust a dataset. Many errors could actually be a dataset’s fault and
not a model’s fault, but it’s not very common to really explore the dataset when
designing new architectures and testing on those datasets. We urge researchers
in machine learning to not treat their datasets as black box benchmarks, since in
many aspects the dataset matters as much as the method.

