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A Information gain objective

In this section, we derive the optimization objective used in Sections 4.3 and 4.4,
from a perspective of maximizing information gain. Information gain is a well-
defined mathematical quantity, and choosing sensing actions to maximize infor-
mation gain has been used as the basis of many works on next-best view planning
(see Sec. 3).

We will first describe some notation, and make two simplifying assumptions
in order to derive our objective as an approximation of information gain.

A.1 Notation

• The detector predicts the probability of a detection at every anchor box
location. Let there be a total of K discrete anchor box location, which are
usually organized as a regular 2D-grid (see Sec. 4.2). Let Ak denote the k-th
anchor box, where 1 ≤ k ≤ K. Define A = {Ak}Kk=1 to be the vector of all
anchor boxes.

• Let DAk
be a binary random variable denoting whether a detection exists

at Ak. DAk
∈ {0, 1}; it is 0 if there is no detection at Ak, and 1 if there is.

Define DA = {DAk
}Kk=1.

• Given a unified point cloud C, an inference algorithm (in this case, the
detector) outputs a probability distribution P (DA | C) over all possible
detection states DA ∈ {0, 1}K . Denote by P (DAk

) the marginal probability
distribution of detection at Ak.

• As discussed in Sec. 3, a single light curtain placement is defined by a set of
control points L = {Xt}Tt=1. The light curtain will be placed to lie vertically
on top of these control points. The 3D points sensed by this light curtain are
fused back into C, to obtain an updated unified point cloud C �. We assume
for now that the control points Xt correspond to some anchor box locations.
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A.2 Assumptions

We now make the following assumptions:

1. Detections probabilities across locations are independent.
That is, P (DA | C) =

�K
k=1 P (DAk

| C). This is a reasonable assumption,
since the probability of detections at one location should be unaffected by
detections in other locations. A consequence of this assumption is that the
overall entropy H(DA | C) can be written as the sum of entropies over

individual anchor locations i.e. H(DA | C) =
�K

k=1 H(DAk
| C) (since

the entropy of independent random variables is the sum of their individual
entropies).

2. Light curtain sensing resolves uncertainty fully but locally.
After placing L = {Xt}Tt=1, updating the unified point cloud to C �, re-running
the detector, and obtaining a new probability distribution of the updated
detections D�

A, the following hold.

(a) The uncertainty of locations covered by the curtain reduces to zero:
P (D�

Ak
| C �) ∈ {0, 1} for all Ak ∈ L.

(b) The uncertainty of all the other locations remains unchanged:
P (D�

Ak
| C �) = P (DAk

| C) for all Ak �∈ L.

Assumptions 1 and 2 imply that the entropy of the updated distribution is given
by (here K is the total number of anchor locations, and T is the number of
locations that the light curtain lies on).

H(D�
A | C �) =

K�

k=1

H(D�
Ak

| C �)

=
�

Ak∈L

H(D�
Ak

| C �)
� �� �

= 0 as P (D�
Ak

|C�)∈{0,1}

+
�

Ak �∈L

H(D�
Ak

| C �)
� �� �
= H(DAk

| C)

=
�

Ak

H(DAk
| C)−

�

Ak∈L

H(DAk
| C)

=

K�

k=1

H(DAk
| C)−

�

Ak∈L

H(DAk
| C)

= H(DA | C)−
T�

t=1

H(DXt
| C)
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The information gain, which is essentially a difference between the prior and
updated entropies, is

Information Gain = H(DA | C)−H(D�
A | C �)

= H(DA | C)−
�
H(DA | C)−

T�

t=1

H(DXt | C)
�

=

T�

t=1

H(DXt
| C)

Optimization objective: This leads us to an optimization objective where
maximizing information gain is equivalent to simply maximizing the sum of
uncertainties (binary entropies) over the control points the curtain lies on. The

maximization objective then becomes: J(X1, . . . ,XT ) =
�T

t=1 H(Xt), where
H(X) is the binary entropy of the detectors confidence at the location of X.

B Hierarchical optimization objective for smoothness

Section 4.4 described an efficient algorithm for optimally placing light curtains
to maximize coverage of high uncertainy regions. However, if two valid light
curtain placements {X�

t}Tt=1, {X��
t }Tt=1 have equal sum of uncertainties, which

one should we prefer? Distinct light curtain placements can have equal sums
of uncertainties due to regions where the detector uncertainty is uniform. In
such cases, we can choose to prefer curtains that are smooth, i.e. the laser angle
has to change the least on average. Here, we propose a hierarchical objective
function that incorporates smoothness. We then show that this also has the
optimal substructure property and can be optimized in a very similar manner.

We define a hierarchical objective function that ranks two placements as
follows:

JH({X�
t}Tt=1) ≥ JH({X��

t }Tt=1) iff





J({X�
t}Tt=1) > J({X��

t }Tt=1)

or



J({X�
t}Tt=1) = J({X��

t }Tt=1)

and�T−1
t=1 |θ(X�

t+1)− θ(X�
t)|2

≤ �T−1
t=1 |θ(X��

t+1)− θ(X��
t )|2

This hierarchical objective prefers light curtains that cover a higher sum of
uncertainties. But if two curtains have the same sum, this objective prefers
the one with a lower sum of squared laser angle deviations. We note that this
hierarchical objective JH(X1, . . . ,XT ) also satisfies optimal substructure. In fact,
it obeys the same recursive optimality equation as Equation 6. Hence, it can
be accommodated by our approach with minimal modification to our algorithm.
Additionally, it can be executed with no additional overhead in O(NTBavg) time,
and leads to smoother light curtains.
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C Training active detection with online light curtain data
generation

Note that we use the same detector to process data from the single beam LiDAR
and all subsequent light curtain placements. During training, data instances need
to be sampled from the single-beam LiDAR, as well as from up to K number
of light curtain placements. We choose K = 3 in all our experiments. Crucially,
since the light curtains are placed based on the output (uncertainty maps) of
the detector, the point cloud data distribution from the k-th (1 ≤ k ≤ K) light
curtain placement depends on the current weights of the detector. As the weights
of the detector get updated during each gradient descent step, the input training
data distribution from the k-th light curtain also changes. To accomodate for
non-stationary training data, we propose training with online data-generation.
This is described in Algorithm 1.

Algorithm 1: Training with Online Light Curtain Data Generation

W0 ← initial weights of the detector
T ← number of training iterations
K ← number of light curtain placements
Function InputPointCloud(W , S, k):

if k = 0 then
P0 ← point cloud from single-beam LiDAR in scene S
return P0

else
Pk−1 ← InputPointCloud(W, S, k − 1)
H ← uncertainty map from detector with weights W and input Pk−1

P ← point cloud from placing light curtain optimized for H in scene S
Pk ← Pk−1 ∪ P
return Pk

for t = 1 to T do
St ← t-th training scene
kt ← randomly sample from {0, 1, . . . ,K}
Pt ← InputPointCloud(Wt−1, St, kt)
Wt ← gradient descent update using previous weights Wt−1 and input Pt

return WT

At each training iteration t, we retrieve a scene St from the training dataset. To
create the input point cloud, we choose to either use the single-beam LiDAR data
or k light curtain placements (1 ≤ k ≤ K), each of them with equal probability.
For generating the k-th light curtain data, we start with the single-beam LiDAR
point cloud. Then we successively perform a forward pass through the detector
network with the current weights to obtain an uncertainty map. We compute the
optimal light curtain placement for this map, gather points returned from placing
this curtain, and finally, fuse the points back into the input point cloud. This
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cycle is repeated k times to obtain the input point cloud to train on. Generating
light curtain data in such an online fashion ensures that the input distribution
doesn’t diverge from the network weights during the course of training.

Ablation experiment

Here, we perform an ablation experiment on the Virtual KITTI dataset, to
evaluate the importance of training with online light curtain data generation. We
first collect the entire dataset at the beginning, using the initial weights of the
network. Then, we freeze this data and train the detector. The results are shown
in Table 1. We see that the accuracy on light curtain data (Table 1 rows 2-4)
decreases substantially to less 2%, since this data distribution diverges during
training. However, the performance on single-beam LiDAR remains relatively
same, since the LiDAR data distribution doesn’t change. This demonstrates the
importance of re-generating the training data online as the weights of the detector
change.

Virtual KITTI

3D mAP BEV mAP

0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU

Single Beam Lidar 37.68 18.65 38.14 30.08

1 Light Curtain 1.41 0.48 1.61 0.75

2 Light Curtains 0.73 0.38 1.22 0.58

3 Light Curtains 0.68 0.36 1.13 0.54

Table 1: Performance of the detector trained with single-beam LiDAR and up
to three light curtains, without online training data generation. The training
dataset is collected using the initial weights of the network and is fixed during
the remainder of training. The light curtain performance decreases substantially.

D Datasets

D.1 Virtual KITTI dataset

Virtual KITTI is a photo-realistic synthetic video dataset designed for video
understanding tasks [9]. It contains 21,160 frames (10,630 unique depth maps)
generated from five different virtual worlds in urban driving settings design to
closely resemble five scenes in the KITTI dataset, under different camera poses
and weather conditions. It provides ground truth depth maps and 3D bounding
boxes. We use four scenes (ids: 0001, 0006, 0018, 0020) as our training set, and
one scene (id: 0002) as our test set.
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D.2 SYNTHIA dataset

We also use the latest version of the SYNTHIA dataset [29] designed for active
learning purposes. It is a large dataset containing photo-realistic scenes from
urban driving scenarios, and provides ground truth depth and 3D bounding box
annotations. It contains 191 training scenes (∼96K frames) and 97 test scenes
(∼45K frames).

D.3 Evaluation metrics

We evaluate using common 3D detection metrics: mean average precision (mAP)
of 3D bounding boxes (denoted as 3D mAP) and of 2D boxes in the bird’s eye
view (denoted as BEV mAP). We also evaluate using two different IoU overlap
thresholds of 0.5 and 0.7 between detection boxes and ground-truth boxes to be
considered true positives.

E Noise simulations

In order to simulate noise in the real-world sensor, we add 10% noise to the light
curtain input, for varying number of light curtain placements, on the Virtual
KITTI dataset. The results are shown in Table 2. The results are comparable
to without noise, indicating that our method is robust to noise and is likely to
transfer well to real-world data.

Virtual KITTI

Without noise With noise

3D mAP BEV mAP 3D mAP BEV mAP

0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU 0.5 IoU 0.7 IoU

Single Beam Lidar 39.91 15.49 40.77 36.54 39.03 17.13 39.93 30.26

1 Light Curtain 58.01 35.29 58.51 47.05 57.04 25.99 57.65 45.31

2 Light Curtains 60.86 37.91 61.10 49.84 59.43 30.91 59.89 46.11

3 Light Curtains 68.52 38.47 68.82 50.53 60.02 31.09 66.78 46.39

Table 2: Performance of detectors trained with single-beam LiDAR and up
to three light curtains, with 10% additional noise in the light curtain input.
Performance is not significantly lower than without noise.
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F Efficiency analysis

In this section, we report the time taken by our method, for varying number of
light curtain placements, and for different light curtain placement algorithms, in
Table 3. The time (in seconds) includes the time taken for all preceding steps. For
example, the time for 2 light curtain placements includes the time required for
generating the single-beam LiDAR data, computing the optimal first and second
light curtain placements, and all intermediate forwarded passes through the
detection network while generating uncertainty maps. The time is averaged over
100 independent trials over different scenes, and we report the 95% confidence
intervals.

Single-beam
LiDAR

One
light curtain

Two
light curtain

Three
light curtain

Random 0.096 ± 0.001 0.763 ± 0.008 1.441 ± 0.014 2.133 ± 0.014

Fixed depth - 15m 0.090 ± 0.002 0.765 ± 0.008 1.412 ± 0.012 2.028 ± 0.018

Fixed depth - 30m 0.095 ± 0.002 0.789 ± 0.005 1.474 ± 0.008 2.180 ± 0.013

Fixed depth - 45m 0.094 ± 0.001 0.778 ± 0.003 1.475 ± 0.013 2.174 ± 0.012

Greedy Optimization
(Randomly break ties)

0.092 ± 0.000 0.825 ± 0.014 1.547 ± 0.023 2.250 ± 0.030

Greedy Optimization
(Min laser angle change)

0.086 ± 0.001 0.824 ± 0.010 1.543 ± 0.020 2.242 ± 0.028

Frontoparallel +
Uncertainty

0.091 ± 0.001 0.441 ± 0.003 0.807 ± 0.006 1.165 ± 0.008

Dynamic Programming 0.097 ± 0.008 0.944 ± 0.010 1.767 ± 0.015 2.600 ± 0.020

Table 3: Time efficiency (in seconds) for varying number of light curtains and dif-
ferent light curtain placement algorithms. Time is averaged over 100 independent
trials over different scenes, and we report the 95% confidence intervals.

Note that as we place more light curtains, more time is consumed for the
network’s forward pass and in calculating where to place the light curtain. This
presents a speed-accuracy tradeoff; more light curtains will improve detection
accuracy at the expense of taking more time. On the other hand, our method
can run faster using fewer light curtains but with a decreased accuracy. This
tradeoff is visualized in Figure 1.
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Fig. 1: Speed-accuracy tradeoff using light curtains optimized by dynamic pro-
gramming, on the Virtual KITTI dataset. More light curtains correpsond to
increased accuracy but reduced speed.


