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Supplementary Material

In this document, we provide additional details of the model verification, additional2

technical backgrounds, additional implementation details, more qualitative results,3

more comparisons, raw user study data, and raw experimental data.4

All involved tests, datasets, methods, results, and statistics are already presented in5

the main article, and this document only contains detailed extensions or implemen-6

tations.7

All EAP results in this document are achieved using our knapsack solver in absence8

of user interaction.9
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Figure 1: Texture dataset with human annotated ground truth pixel-wise texturalness measurement.

1 Additional Details for Verification64

In the main article, we have modeled the EAP (Erasing Appearance Preservation) pixel-wise sup-65

porting position selection task as a knapsack problem. Here we detail our verification on Xu et al.66

[2012]’s dataset as presented in the main paper (Section 2.1, line 351-354). Our models in the main67

article are:68

Knapsack item value. For any pixel at position p, we have modeled item value vp as69

vp =
∑
i∈lp

∑
j∈lp

wij ||τ(Xi)− τ(Yj)||22 (1)

where lp is a local window surrounding p, τ(·) is CIE RGB-to-Lab transform, and X and Y are70

source and smoothed images respectively. Gaussian term wij = exp(||Xi − Yj ||22/2σ2) makes this71

value faithful to human perception.72

Knapsack item weight. The modeling of item weight wp is73

wp = ε+
∑
i∈lp

∑
j∈lp

||Yi − Yj ||22 (2)

where ε is a scaler to prevent zero weights. This weight modeling is aimed at protecting desired74

details in images, as mentioned in the main article.75

1.1 Objective76

The fundamental goal of EAP knapsack is to identify pixel positions with task-specific patterns, i.e,77

discovering textural pixels for texture removal, or identifying reflectance color pixels for intrinsic78

decomposition, etc. Because knapsack algorithms are aimed at finding items with as large as possible79

total values and limited total weights, our verifications are presented as:80

1. to verify that item value vp is positively correlated to task-specific desired patterns.81

2. to verify that item weight wp is negatively correlated to task-specific desired patterns.82

1.2 Setup83

We use texture removal task to verify our modeling. In particular, we use RTV Texture Boundary84

(RTVDB) dataset in Xu et al. [2012] to obtain in-the-wild image instances and the paired texture85

annotations. Xu et al. [2012] provides 200 textured images and 200 paired human annotated structure86
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Figure 2: Correlation between our item value/weight modeling and ground truth texturalness.

boundary maps. We measure pixel-wise distance to nearest structure boundary as structuralness (and87

the inverted value as texturalness). As shown in Fig.1, pixels with dense and continuous texture are88

annotated with high texturalness (low structuralness) whereas pixels over structural edges or object89

boundaries are marked with low texturalness (high structuralness).90

1.3 Involved image smoothing energy91

We exploit various image smoothing energies ( WLS, Welsch [1977]; TV, RUDIN et al. [1992];92

L0, Xu et al. [2011]; RTV, Xu et al. [2012]; TREE, Bao et al. [2014]; L1, Bi et al. [2015]) in this93

verification.94

1.4 Implementation details95

Using all involved methods, we perform smoothing on all image instances in the RTVDB dataset and96

randomly sample one million pixel position points in all smoothed images. For each point, we obtain97

the measured item value, item weight, and the ground truth texturalness.98

1.5 Verification99

As in Fig. 2, we report the obtained correlation between item weight, item value, and texturalness. We100

divide all values/weights into 16 bins and then report the mean value and standard deviation in each101

bin for each candidate. Regardless of various frontend smoothing energies, vp always shows positive102

correlation with ground truth texturalness. In the meanwhile, wp always shows negative correlation103

with the texturalness. These evidences verify that our modeling has solid foundations in the texture104

removal tasks. Given the typicality of texture removal in image smoothing, our approach in other105

related tasks is likely to have similar verifications. These evidences also shows that our knapsack106

modeling is statistically well-motivated and technically solid to tackle specific problems.107

2 Algorithmic Backgrounds: 0-1 Knapsack108

The 0-1 knapsack problem is one of the most typical combinatorial problem in mathematics, statistics,109

and economics. Given a set of items, each with a weight and a value, the objective is to determine110

whether to include each item in a collection so that the total weight is less than or equal to a given111

limit and the total value is as large as possible.112

Dynamic Programming (DP) 0-1 knapsack solver is one of the most typical solutions for this problem.113

A python version of this standard solver can be sketched as:114
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# Python code of standard 01 knapsack dynamic programming (DP) solver.

def knapsack_01(n, c, w, v):
    value = [[0 for j in range(int(c) + 1)] for i in range(n + 1)]
    for i in range(1, n + 1):
        for j in range(1, int(c) + 1):
            value[i][j] = value[i - 1][j]
            if j >= w[i - 1] and value[i][j] < value[i - 1][int(j - w[i - 1])] + v[i - 1]:
                value[i][j] = value[i - 1][int(j - w[i - 1])] + v[i - 1]
    x = [0 for i in range(n)]
    j = c
    for i in range(n, 0, -1):
        if value[i][int(j)] > value[i - 1][int(j)]:
            x[i - 1] = 1
            j -= w[i - 1]
    return x

# Below is a unit test for this function.

knapsack_capability = 5
item_quantity = 6
test_weights = [2.4, 2.6, 3.2, 1.2, 5.7, 2.9]
test_values = [2.7, 3.2, 1.6, 5.3, 4.3, 3.1]
test_result = knapsack_01(item_quantity, knapsack_capability, test_weights, test_values)
print(test_result)

115

116

It is worth noticing that the time complexity of this standard solver is O(NW ) with N being the item117

quantity and W being the (integer number of) the knapsack capability. This solver may yield optimal118

solutions, nevertheless it may also consume hours to compute one large image with pixel quantity at119

about 1e8. Therefore, it is important to apply some basic accelerations for practical usages.120

2.1 Scalable 0-1 knapsack solver121

The problem of scaling 0-1 Knapsack algorithm is extensively studied in the field of mathematics122

and statistics. We adopt a simple yet very effective solver using Stanford Greedy Knapsack Heuristic123

(GKH, Stanford [2001]).124

The basic idea is that, instead of testing all items in or out of the knapsack, we may only compute125

a relatively small subset of all items so that a vast majority of the time consuming can be saved.126

When the knapsack capability is extremely large, the target items can be viewed as particles with the127

value-weight density dp128

dp =
vp

wp
(3)

For each item p, if the density dp is very large, we can assume that this item is of great value and129

then directly put it into the knapsack without extra consideration. On the contrary, if the density dp is130

minimal, we may directly ignore it because it may not make much contribution to our value-weight131

trade-offs. Finally, when the density dp is neither too large nor too small, we apply standard knapsack132

algorithm to solve these mid-range items.133

In particular, given the knapsack capability U , we first roughly estimate item quantity Q̄ in the134

knapsack135

Q̄ =
U

d
(4)

where d̄ is the average density of all items. After that, we define a parameter called interested range136

denoted by Nintersted. Given a set of item densities d1...N sorted from small to large, we divide them137

into three groups138

{d1, ...,dN} →
{d1, ...,dQ̄− 1

2Nintersted
}+ {dQ̄− 1

2Nintersted
, ...,dQ̄+ 1

2Nintersted
}+ {dQ̄+ 1

2Nintersted
, ...,dN} (5)

where Nintersted = 200 is a good choice for large images. All items in {d1, ...,dQ̄− 1
2Nintersted

}139

are directly excluded from the knapsack, and all items in {dQ̄+ 1
2Nintersted

, ...,dN} are directly140

included in the knapsack. After that, we solve the standard 0-1 knapsack within the subset141

{dQ̄− 1
2Nintersted

, ...,dQ̄+ 1
2Nintersted

}. A python version of this accelerated solver can be sketched as:142
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# python code of Greedy Knapsack Heuristic (GKH) 01 knapsack solver.

def knapsack_01_GKH(sorted_item_indices, Q_bar, N_interested, n, c, w, v):
    x = [0 for i in range(n)]
    # exclude items with low density
    x[0: Q_bar - N_interested // 2] = 0

    # include items with high density
    x[Q_bar + N_interested // 2: n] = 1
    # analyse interested items with mid-range density
    n -= N_interested
    c = N_interested
    v = [v[sorted_item_indices[i]] for i in range(Q_bar - N_interested // 2, Q_bar + N_interested // 2)]
    w = [w[sorted_item_indices[i]] for i in range(Q_bar - N_interested // 2, Q_bar + N_interested // 2)]
    x[Q_bar - N_interested // 2: Q_bar + N_interested // 2] = knapsack_01(n, c, w, v)
    return x

143

144

With this improved solver, 512× 512 pixels can be solved in roughly 175 ms as reported in the main145

article. This implementation can significantly speed up the solving, and almost no visual quality146

sacrifice is caused in human perception.147

2.2 Stabilized solver and full implementation codes148

As in the main paper, the actual knapsack problem is solved in multiple iterations. This solver can149

be further stabilized by introducing randomness. For example, we can add some random noise in150

some starting iterations and then progressively remove these noise when nearing convergence. This151

simulated annealing trick can contribute to the robustness of the solver.152

Furthermore, we provide full codes of our knapsack solver implementation in the code-and-data files153

to aid in reproducibility.154

3 Image Smoothing Implementation Details155

We clarify detailed implementation applying EAP to different image smoothing energies.156

3.1 EAP + Total Variation157

The total variation (RUDIN et al. [1992]) smoothing energy can be written in form of the formulation158

in the main article as159

ρ(Y ) = λ(|∂xY |+ |∂yY |) (6)
where Y is the image for optimization. ∂xY or ∂yY refers to image gradient in x-axis or y-axis.160

Total variation is relatively easy to implement and we use gradient descent method to solve the161

smoothing problem. Note that we have two options to apply EAP: (a) solve knapsack each time after162

total variation is converged, or (b) solve knapsack for each total variation minimization iteration.163

Nevertheless, we find these two methods yields nearly same visual results. We recommend to use (a)164

for implementation flexibility. We fix λ = 0.1 in experiments.165

3.2 EAP + Weighted Least Square166

Weighted least square (Welsch [1977]) energy can be formulated for each pixel position p as167

ρ(Y )p = λ
∑
i∈lp

exp(−||Yp − Yi||/σs)||Yp − Yi||22 (7)

which is fully differentiable and can be implemented in the same way as total variation. We fix lp as a168

3× 3 window, λ = 0.1, and σs = 0.25 in experiments.169

3.3 EAP + L0 Smoothing170

L0 smoothing (Xu et al. [2011]) energy can be formulated as171

ρ(Y ) = λ(#∂xY + #∂yY ) (8)

where # is the counting metric outputting the quantity of non-zero elements in a matrix. L0 smoothing172

has closed-form solvers. Official L0 smoothing implementation recommends to use fast Fourier173
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transform to preserve source image appearance, causing a bit troublesome to apply EAP to get rid of174

appearance preservation. Our solution is to use Xu et al. [2011]’s secondary gradient descent solver175

to replace Fourier transform so that EAP can be easily implemented. Note that this modification does176

not numerically change the results because the Fourier transform solver and the gradient descent177

solver yield mathematically same results as mentioned in Xu et al. [2011]. We fix λ = 0.01 in178

experiments.179

3.4 EAP + Relative Total Variation180

Relative total variation (Xu et al. [2012]) energy can be formulated as:181

ρ(Y )p = λ

(
Dx(p)

Lx(p) + ε
+

Dy(p)

Ly(p) + ε

)
(9)

where the term of D(·) is defined as182

Dx(p) =
∑
q∈lp

gpq|∂xYq| and Dy(p) =
∑
q∈lp

gpq|∂yYq| (10)

and L(·) is defined as183

Lx(p) = |
∑
q∈lp

gpq∂xYq| and Ly(p) = |
∑
q∈lp

gpq∂yYq| (11)

and gpq is defined as184

gpq = exp

(
− (px − qx)2 + (py − qy)2

2σ2

)
(12)

and the default parameters are 3 × 3 window lp, σ = 0.2, and λ = 0.015. Official relative total185

variation solver is numerical, and the objective is solved iteratively in a two-step manner. We replace186

its original appearance approximation with EAP in the structure extraction step and the other step187

remains same.188

3.5 EAP + Spanning Tree189

It is worth noticing that Spanning Tree (Bao et al. [2014]) is particularly a filtering method rather than190

an optimization-based method. We include this method because it is typical and common-used, and it191

also has optimization-based versions. The formulation of optimization-based spanning tree energy is192

ρ(Y )p = λ||Yp −
∑
j∈~

wp(j)Yj ||22 (13)

where ~ is the set of all pixel positions and wp(·) is the Spanning Tree Collaborative Weight. The193

term wp(·) inherently obeys the global addend constraints194 ∑
j∈~

wp(j) = 1 | ∀p ∈ ~

 (14)

and for more details please refer to Bao et al. [2014]. EAP can also be implemented using this195

smoothing energy with default parameter λ = 0.1.196

3.6 EAP + L1 smoothing197

L1 smoothing (Bi et al. [2015]) energy can be formulated as:198

ρ(Y )p = λ1(
∑
i∈lp

∑
j∈lp

wij ||Yi − Yj ||2) + λ2(
∑
i∈gp

∑
j∈gp

wij ||Yi − Yj ||2) (15)

where wij is the weight for color distance in weighted CIE-Lab space. lp is a local window at p,199

and gp is a super-pixel region that contains p. We use the recommended official configurations200

λ1 = 20.00, λ2 = 0.01, and all parameters are same as official implementations. So EAP can be201

directly embedded to the official Split-Bregman solver.202

8



4 Ablative Study Implementation Details203

We detail the ablative study in the main paper.204

4.1 Official Implementations205

We present the smoothed results using official implementations of different image smoothing algo-206

rithms.207

4.2 Extreme Parameter208

We present the smoothed results using extreme lambda in different image smoothing algorithms, but209

without using EAP. In the main paper we have presented results using L1 smoothing (λ = 10.0). In210

the supplementary material we present results with some other configurations: (1) L0 smoothing and211

λ = 0.1. (2) RTV and λ = 0.2. (3) L1 smoothing and λ = 5. Please see also Fig. 6-10 for details.212

4.3 Iterative Smoothing213

We present the smoothed results by repeating original image smoothing algorithms multiple times214

(10 times, same as the our default EAP configuration), but without using EAP. In the main paper215

we have presented results using L1 smoothing (repeating 10 times). In the supplementary material216

we present results with some other configurations: (1) L0 smoothing (repeating 10 times). (2) RTV217

(repeating 10 times). (3) L1 smoothing (repeating 10 times). Please see also Fig. 6-10 for details.218

4.4 Without Weight219

We present the smoothed results without using knapsack weights wp. We set a fixed threshold (0.1)220

to the knapsack values vp. All pixels above this threshold are viewed as erasing positions. The results221

are presented in the main paper.222

4.5 Meaningless Weight223

We present the smoothed results by replacing all knapsack weights wp with a constant (1.0). The224

results are presented in the main paper.225

4.6 Without Value226

We present the smoothed results without using knapsack values vp. We set a fixed threshold (0.1) to227

the knapsack weights wp. All pixels above this threshold are viewed as erasing positions. The results228

are presented in the main paper.229

4.7 Meaningless Value230

We present the smoothed results by replacing all knapsack value vp with a constant (1.0). The results231

are presented in the main paper.232

4.8 Full Method233

Our proposed solution with 0-1 knapsack solving. The results are presented in the main paper.234

5 Image Decomposition Implementation Details235

5.1 EAP + DPGMM + L1 smoothing236

Bi et al. [2015] proposes to smooth images in multiple stages. After a standard L1 smoothing, this237

technique applies Dirichlet Process Gaussian Mixture Model (DPGMM) to cluster all pixels into an238

9



adaptive quantity of clusters. After that, this technique smooths images again. A rough formulation239

could be written as240

ρ(Y )p = λ1(
∑
i∈lp

∑
j∈lp

wij ||Yi−Yj ||2)+λ2(
∑
i∈gp

∑
j∈gp

wij ||Yi−Yj ||2)+λ3(
∑
i∈cp

∑
j∈cp

wij ||Yi−Yj ||2)

(16)
where cp is a DPGMM cluster that contains pixel position p, and all other terms remain same with L1241

smoothing. For more implementation details please refer to Bi et al. [2015]. This method is aimed at242

building up object-wise color consistency for intrinsic decomposition. This smoothing energy can be243

directly implemented in the same way with L1 smoothing.244

5.2 EAP + Bell245

Bell (Bell et al. [2014]) method is a very typical intrinsic decomposition method. Its optimization246

is discrete and it does not explicitly require appearance preserving. However, the appearance247

preservation is in particular hidden in its formulations. Many other intrinsic decomposition methods248

can be formulated in similar ways as Bell method. The embedding of EAP into Bell can be applied to249

many other intrinsic methods.250

Given the image X , Bell method solves a reflectance map R and a shading map S so that251

X = R� S (17)

where � is the Hadamard product. Bell’s overall optimization can be written as252

Eintrinsic = Ereflectance(R) + Eshading(S) s.t. X = R� S (18)

In Bell method, the term Ereflectance includes pairwise reflectance prior, shading smoothness prior,253

absolute shading intensity prior, and Eshading includes shading discontinuity prior. For detailed254

formulations, please refer to Bell et al. [2014]. Among all involved prior constraints, no explicit255

appearance preservation can be found. However, Bell’s appearance preservation is in particular256

hidden in their priors.257

Taking their shading discontinuity prior as an example, which can be written as258

ediscontinuity =
∑

(i,j)∈B

| logSi − logSj | (19)

where B is a set of many pixel position pairs (i, j), and in each pair, i and j are two adjacent pixel259

positions. We can transform this constraint into260

ediscontinuity =
∑

(i,j)∈B

| log
Xi

Ri
− log

Xj

Rj
|

=
∑

(i,j)∈B

| logXi − logRi − logXj + logRj |

=
∑

(i,j)∈B

|(logXi − logXj)− (logRi − logRj)|

=
∑

(i,j)∈B

|∂i logXi − ∂i logRi| (20)

According to Poisson Perez et al. [2003] opinion, when the sampled points in B are dense enough,261

the approximation of image gradients can be viewed as that for the definite integral of image intensity262 ∫ i

0

ediscontinuity =

∫ i

0

∑
(i,j)∈B

|∂i logXi − ∂i logRi|

=
∑

(i,j)∈B

∫ i

0

|∂i logXi − ∂i logRi|

≈
∑

(i,j)∈B

| logXi − logRi| (21)
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That is to say, Bell’s shading discontinuity prior is in particular mathematically consistent to the263

log-space appearance preservation between source image X and smoothed reflectance R.264

Similarly, Bell’s shading smoothness prior can be written as265

eshading_smoothness =
∑
i

(logSi − logSi+1)2

=
∑
i

(log
Xi

Ri
− log

Xi+1

Ri+1
)2

=
∑
i

((logXi − logXi+1)− (logRi − logRi+1))2

=
∑
i

(∂i logXi − ∂i logRi)
2

∫ i

0

eshading_smoothness ≈
∑
i

(logXi − logRi)
2 (22)

where the shading discontinuity prior can also be written as log-space appearance preservation.266

Finally, Bell’s absolute shading intensity prior can also be transformed267

eabsolute_shading_intensity =
∑
i

| logSi − log S̄|

=
∑
i

| logXi − logRi − log S̄|

=
∑
i

| logXi − logRi · S̄| (23)

where S̄ is the average value of S. That is to say, the absolute shading intensity prior is transformed268

into log-space appearance preservation between the scaled source X and smoothed reflectance R.269

In particular, we apply EAP to all these appearance preservation terms. We compute the 0-1 knapsack270

using source image X and smoothed reflectance image R, and then replace the three mentioned271

priors with their EAP versions.272

Many other intrinsic methods can be implemented in the same way by finding the hidden appearance273

preservation in their priors and then apply EAP to getting rid of their appearance preservation terms.274

Besides, the original Bell method recommends to only compute reflectance intensity whereas ignore275

the reflectance hue/saturation (or called chroma). We obey this principle in all quantitative compar-276

isons to ensure the fairness and that its performance is consistent to previous literature. However, we277

also find that its image editing usability and capability can be improved if it computes all reflectance278

channels. Therefore, in our human-involved interactive user study, we use the Bell to compute all279

reflectance channels to make the evaluation more perception-based.280

5.3 EAP + Advanced image decomposition281

Carroll et al. [2011] proposes to decompose illumination maps given reflectance maps and appearance282

maps. In main paper we directly view this method as a black-box and it is not necessary to make283

more modifications.284

One important notice is that this technique is in particular an interactive application. Users can285

use scribbles to control the decomposed layers. However, all results in the our work are obtained286

automatically without any extra interaction.287

6 Image Manipulation Implementation Details288

Given a set of image editing layers, i.e, Adobe PhotoShop Layers, we here clarify some terminologies289

mentioned in the main article. We illustrate some examples in Fig. 3 and Fig. 4.290
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Input Image Inverted ColorShadow

Smoothing

Sp. Reflection

Recolored

Shadow Enhanced

Sp. Ref. Removed

Stylized

Figure 3: Toy examples of involved image editing workflows in our experiments.

6.1 Layer removal or reordering291

Users may directly remove any layer or change the order of some layers. These are fundamental use292

cases of layer-based image editing.293

6.2 Color inverting294

Users may also invert the layer colors. This is useful when the objective is to recoloring reflectance295

layers or invert illumination conditions, i.e, black-to-white object recoloring, day-to-night relighting,296

etc.297

6.3 Curves tuning and Exposure/Gamma correction298

Users may tune the intensity curves of any specific layers. In particular, exposure tuning and gamma299

correction are frequently used cases. Given user-specified exposure scaler k and gamma scaler g, the300

mapping can be sketched as301

y = (kx)g (24)

where y is output intensity and x is input intensity. Note that this transform can be applied to any302

single layer, multiple selected layers, or all layers.303

6.4 Masking304

Because EAP smoothing method yields highly structured color maps, we can use very simple305

transforms to obtain high-quality masks. In particular, given a smoothed structure Y and a user-given306

source color cs ∈ R3, a mask M can be measured as307

Mp = λ||Yp − cs||22 (25)

where λ is a scaler to normalize this mask. Note that this mask is not binarized, and it is a soft308

segmentation of the source image. This mask can be applied to many use cases to separately editing309

image constitutes. Because cs can be sampled with only one click in images, it is very flexible to310

obtain the mask M .311
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or or

Editing 
Color

Editing 
Sp.Reflection

Editing 
Shadow

Source
Smoothing 
& Masking

Layer 
Decomposition

Figure 4: Typical image manipulation using strategies involved in our image editing experiments.

6.5 Recoloring312

Given source color cs ∈ R3 and target color ct ∈ R3, a directional color vector cv can be written as313

cv = ct − cs (26)

Then, using the mask M , users may directly manipulate the appearance colors in image X314

X∗p = Mp � cv + Xp (27)

where � is the Hadamard product, and X∗ is the edited image. Note that this formulation is only a315

basic and simple recoloring maneuver and advanced image recoloring is extensive studied in methods316

like Carroll et al. [2011]; Tan et al. [2016, 2018]. Finally, this recoloring can be applied to any single317

or multiple decomposed layers.318

7 IIW/SAW Test Implementation Details319

One notice is that some intrinsic methods output single-channel gray-scale illumination maps whereas320

some others yield colorful illumination maps. Because IIW/SAW is focused on single-channel321

illumination, we convert all available illumination maps into gray-scale in IIW/SAW tests.322

7.1 Intrinsic Image in the Wild323

As to IIW Bell et al. [2014] test, we directly use the official implementation to evaluate the candidates.324

One notice is that L1 smoothing is very time consuming and we use the evaluation method mentioned325

in Bi et al. [2015] to speed up the experiments.326

7.2 Shadow Annotation in the Wild327

As to SAW Kovacs et al. [2017] test, instead of the original metric, we use the challenged metric in Li328

and Snavely [2018] as our measurements. The enhanced metric is considered to be able to highlight329

performance differences. Similarly, for L1 smoothing we use method in Bi et al. [2015] to obtain the330

test data.331

8 Deep Learning Method Implementation Details332

8.1 CGIntrinsics333

Li and Snavely [2018]’s method has official open sourced implementations. We directly use their334

codes and their default configurations in our experiments.335

8.2 GloSH336

Li and Snavely [2018] reported their method as the current quantitative state of the art in IIW/SAW337

benchmarks. This method does not have open sourced implementations. The official paper Li and338

Snavely [2018] includes all necessary details and we reproduce their results using their recommended339

configurations. Our presented results on their method should only be considered as third-party340

reproductions. Nevertheless, all quantitative statistics of this method are directly transferred from341

their official paper.342
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9 User Study Implementation Details343

Given the reflectance map Y , the illumination map S, and the source image X , we formulate several344

simple and fundamental illumination manipulation use cases for the user study.345

First of all, because some intrinsic decomposition methods do not require the perfect reconstruction346

of the original images, which is not acceptable in image editing, instead of directly using their347

illumination maps S, we compute another reconstruction-guaranteed illumination map S∗ as348

S∗p =
Xp

Yp + ε
(28)

where ε = 1e− 10. In this way, the decomposition is enforced to perfectly reconstruct the source349

image.350

9.1 Shadow enhancement351

Given a simple fixed shadow threshold ts, we view under-threshold pixels in illumination map S as352

shadow, and the shadow enhancement can be formulated as353

X∗p =

{
Yp(S∗p)2 S∗p < ts
YpS

∗
p Others

(29)

where X∗p is the manipulated image. This transform only includes a very simple gamma correction,354

and the results can faithfully reflect the visual quality of the decomposed layers.355

9.2 Specular reflection removal356

Given a simple fixed specular reflection threshold tr, we view over-threshold pixels in illumination357

map S as specular reflections, and the specular reflection removal can be formulated as358

X∗p =

{
Yp S∗p > ts
YpS

∗
p Others

(30)

This transform is achieved via removing the specular reflection parts in the illumination map. It is359

very simple, and thus, faithful to the quality of the original decomposed layers.360

9.3 Experiment setup and results361

As mentioned in the main paper, we apply learning-based methods Zhou et al. [2019]; Li and Snavely362

[2018], optimization methods Bell et al. [2014]; Bi et al. [2015], and their EAP versions to decompose363

100 scenes into layers. For fairness, we do not provide independent thresholds ts and tr for different364

methods or images. We use consistent parameter ts = 0.50 and tr = 0.75 for all involved methods365

and images for the sake of fairness. We obtain 600 results with enhanced shadows and 600 results366

with specular reflections eliminated. We employ Amazon Mechanical Turk (AMT) to rank the visual367

quality of these results and report the obtained ranking in Table. 1 and Table. 2.368

9.4 Raw user study data369

The 1200 raw user study results are listed in the code-and-data files. We also present some high-370

resolution ones from Fig. 42 to Fig. 55.371

10 Additional Results372

10.1 Image smoothing results373

We provide additional results on image smoothing from Fig. 5 to Fig. 29.374

10.2 Image decomposition results375

We provide additional results on image decomposition from Fig. 32 to Fig. 36.376
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10.3 Intrinsic decomposition results377

We provide additional results on intrinsic decomposition from Fig. 38 to Fig. 41.378

10.4 Image manipulation results379

We provide additional results on image manipulation from Fig. 42 to Fig. 55.380

10.5 Supporting position visualizations381

We extend the supporting position visualization in the main article from Fig. 57 to Fig. 62.382

10.6 Limitation383

We present limitation in Fig. 63.384
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Table 1: Amazon Mechanical Turk (AMT) human ranking on Shadow Enhancement (SE).

Instance CGIntrinsics GLoSH Bell EAP + Bell DL1 EAP + DL1

./sample/0.webp 5 6 3 2 4 1

./sample/1.webp 6 5 3 2 4 1

./sample/2.webp 5 6 4 2 3 1

./sample/3.webp 5 6 4 1 3 2

./sample/4.webp 6 5 4 2 3 1

./sample/5.webp 5 6 3 1 4 2

./sample/6.webp 6 5 3 2 4 1

./sample/7.webp 6 5 4 2 3 1

./sample/8.webp 5 6 4 2 3 1

./sample/9.webp 6 5 4 2 3 1

./sample/10.webp 5 6 4 1 3 2

./sample/11.webp 6 5 4 2 3 1

./sample/12.webp 6 5 4 2 3 1

./sample/13.webp 5 6 3 2 4 1

./sample/14.webp 6 5 3 2 4 1

./sample/15.webp 6 5 3 2 4 1

./sample/16.webp 6 5 4 2 3 1

./sample/17.webp 6 5 4 2 3 1

./sample/18.webp 6 5 4 2 3 1

./sample/19.webp 6 5 3 2 4 1

./sample/20.webp 6 5 3 1 4 2

./sample/21.webp 3 5 6 2 4 1

./sample/22.webp 6 5 4 1 3 2

./sample/23.webp 6 5 4 2 3 1

./sample/24.webp 5 6 3 2 4 1

./sample/25.webp 6 5 4 2 3 1

./sample/26.webp 5 6 4 2 3 1

./sample/27.webp 6 5 3 2 4 1

./sample/28.webp 5 6 4 1 3 2

./sample/29.webp 6 5 3 2 4 1

./sample/30.webp 6 5 4 2 3 1

./sample/31.webp 3 6 5 4 1 2

./sample/32.webp 6 5 4 1 3 2

./sample/33.webp 6 5 4 1 3 2

./sample/34.webp 6 5 4 1 3 2

./sample/35.webp 5 6 3 1 4 2

./sample/36.webp 6 5 4 2 3 1

./sample/37.webp 3 5 2 6 4 1

./sample/38.webp 6 5 4 2 3 1

./sample/39.webp 3 6 1 5 4 2

./sample/40.webp 6 5 3 2 4 1

./sample/41.webp 6 5 3 2 4 1

./sample/42.webp 6 5 3 1 4 2

./sample/43.webp 5 6 3 2 4 1

./sample/44.webp 5 6 4 2 3 1

./sample/45.webp 6 5 3 2 4 1

./sample/46.webp 5 6 4 2 3 1

./sample/47.webp 5 6 4 2 3 1

./sample/48.webp 6 5 4 2 3 1

./sample/49.webp 6 5 3 2 4 1

./sample/50.webp 6 5 3 1 4 2

Instance CGIntrinsics GLoSH Bell EAP + Bell DL1 EAP + DL1

./sample/51.webp 6 5 3 1 4 2

./sample/52.webp 6 5 4 1 3 2

./sample/53.webp 6 5 3 1 4 2

./sample/54.webp 5 6 4 2 3 1

./sample/55.webp 5 6 4 2 3 1

./sample/56.webp 6 5 3 2 4 1

./sample/57.webp 6 5 3 1 4 2

./sample/58.webp 6 5 3 2 4 1

./sample/59.webp 6 5 3 2 4 1

./sample/60.webp 6 5 4 2 3 1

./sample/61.webp 6 5 4 2 3 1

./sample/62.webp 6 5 3 2 4 1

./sample/63.webp 5 6 4 2 3 1

./sample/64.webp 6 5 4 2 3 1

./sample/65.webp 5 6 4 2 3 1

./sample/66.webp 6 2 5 3 4 1

./sample/67.webp 6 5 3 1 4 2

./sample/68.webp 5 6 3 2 4 1

./sample/69.webp 5 6 4 2 3 1

./sample/70.webp 6 5 3 1 4 2

./sample/71.webp 6 5 3 2 4 1

./sample/72.webp 6 2 5 3 4 1

./sample/73.webp 5 6 3 2 4 1

./sample/74.webp 6 1 3 5 4 2

./sample/75.webp 6 5 3 2 4 1

./sample/76.webp 5 6 4 2 3 1

./sample/77.webp 6 5 3 1 4 2

./sample/78.webp 5 6 4 2 3 1

./sample/79.webp 6 5 3 2 4 1

./sample/80.webp 6 5 3 1 4 2

./sample/81.webp 6 5 4 1 3 2

./sample/82.webp 5 6 4 2 3 1

./sample/83.webp 5 6 4 2 3 1

./sample/84.webp 6 5 4 2 3 1

./sample/85.webp 6 5 4 2 3 1

./sample/86.webp 6 5 4 2 3 1

./sample/87.webp 6 5 4 1 3 2

./sample/88.webp 6 5 4 2 3 1

./sample/89.webp 6 5 4 2 3 1

./sample/90.webp 6 5 4 2 3 1

./sample/91.webp 3 6 2 5 4 1

./sample/92.webp 6 5 4 2 3 1

./sample/93.webp 6 5 3 1 4 2

./sample/94.webp 6 5 4 2 3 1

./sample/95.webp 5 6 4 1 3 2

./sample/96.webp 6 5 4 2 3 1

./sample/97.webp 6 5 4 1 3 2

./sample/98.webp 6 5 3 1 4 2

./sample/99.webp 6 2 5 3 4 1

Mean 5.70 5.30 3.55 1.71 3.45 1.29

Std 0.46 0.46 0.50 0.45 0.50 0.45
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Table 2: Amazon Mechanical Turk (AMT) human ranking on Specular Reflection Removal (SRR).

Instance CGIntrinsics GLoSH Bell EAP + Bell DL1 EAP + DL1

./sample/0.webp 5 6 3 2 4 1

./sample/1.webp 5 3 2 6 4 1

./sample/2.webp 5 6 4 2 3 1

./sample/3.webp 6 5 3 2 4 1

./sample/4.webp 6 5 4 2 3 1

./sample/5.webp 5 6 3 2 4 1

./sample/6.webp 6 5 4 3 2 1

./sample/7.webp 6 5 4 1 3 2

./sample/8.webp 5 6 4 2 3 1

./sample/9.webp 5 6 3 2 4 1

./sample/10.webp 5 6 4 1 3 2

./sample/11.webp 5 6 4 2 3 1

./sample/12.webp 6 5 3 2 4 1

./sample/13.webp 6 5 4 1 3 2

./sample/14.webp 5 6 3 2 4 1

./sample/15.webp 5 6 4 2 3 1

./sample/16.webp 6 5 3 1 4 2

./sample/17.webp 5 6 4 2 3 1

./sample/18.webp 5 6 4 2 3 1

./sample/19.webp 6 2 4 5 3 1

./sample/20.webp 1 6 5 4 3 2

./sample/21.webp 6 5 4 1 3 2

./sample/22.webp 6 5 3 2 4 1

./sample/23.webp 5 6 4 1 3 2

./sample/24.webp 2 4 6 5 3 1

./sample/25.webp 5 6 3 2 4 1

./sample/26.webp 2 5 4 3 6 1

./sample/27.webp 5 6 3 1 4 2

./sample/28.webp 6 4 1 5 3 2

./sample/29.webp 5 6 4 2 3 1

./sample/30.webp 6 5 3 1 4 2

./sample/31.webp 6 5 3 2 4 1

./sample/32.webp 5 6 3 2 4 1

./sample/33.webp 5 6 4 2 3 1

./sample/34.webp 5 6 3 2 4 1

./sample/35.webp 5 6 3 1 4 2

./sample/36.webp 5 6 3 2 4 1

./sample/37.webp 5 6 3 2 4 1

./sample/38.webp 1 4 6 5 3 2

./sample/39.webp 5 6 4 2 3 1

./sample/40.webp 6 5 4 2 3 1

./sample/41.webp 5 6 3 2 4 1

./sample/42.webp 5 6 4 1 3 2

./sample/43.webp 5 6 3 2 4 1

./sample/44.webp 5 6 4 2 3 1

./sample/45.webp 5 6 3 2 4 1

./sample/46.webp 6 4 5 2 3 1

./sample/47.webp 5 6 3 1 4 2

./sample/48.webp 5 6 4 2 3 1

./sample/49.webp 6 5 4 2 3 1

./sample/50.webp 5 6 3 1 4 2

Instance CGIntrinsics GLoSH Bell EAP + Bell DL1 EAP + DL1

./sample/51.webp 5 6 3 1 4 2

./sample/52.webp 5 6 4 2 3 1

./sample/53.webp 5 6 3 1 4 2

./sample/54.webp 5 6 4 2 3 1

./sample/55.webp 5 6 3 2 4 1

./sample/56.webp 5 6 3 1 4 2

./sample/57.webp 5 6 3 2 4 1

./sample/58.webp 5 3 6 2 4 1

./sample/59.webp 5 6 3 2 4 1

./sample/60.webp 3 6 2 5 4 1

./sample/61.webp 5 6 4 1 3 2

./sample/62.webp 5 6 4 2 3 1

./sample/63.webp 5 6 4 2 3 1

./sample/64.webp 5 6 3 1 4 2

./sample/65.webp 5 6 3 2 4 1

./sample/66.webp 5 6 4 2 3 1

./sample/67.webp 5 6 4 2 3 1

./sample/68.webp 5 6 3 2 4 1

./sample/69.webp 5 6 3 2 4 1

./sample/70.webp 5 6 3 1 4 2

./sample/71.webp 4 5 6 2 3 1

./sample/72.webp 5 6 4 2 3 1

./sample/73.webp 6 5 3 2 4 1

./sample/74.webp 6 5 4 1 3 2

./sample/75.webp 5 6 4 1 3 2

./sample/76.webp 5 6 3 2 4 1

./sample/77.webp 5 4 3 6 1 2

./sample/78.webp 2 6 5 4 3 1

./sample/79.webp 6 5 3 2 4 1

./sample/80.webp 6 5 3 2 4 1

./sample/81.webp 5 6 3 2 4 1

./sample/82.webp 5 6 4 2 3 1

./sample/83.webp 6 5 3 2 4 1

./sample/84.webp 5 6 4 1 3 2

./sample/85.webp 5 6 4 2 3 1

./sample/86.webp 5 6 4 1 3 2

./sample/87.webp 1 5 3 6 4 2

./sample/88.webp 5 6 4 1 3 2

./sample/89.webp 6 5 3 1 4 2

./sample/90.webp 5 6 3 1 4 2

./sample/91.webp 6 5 4 1 3 2

./sample/92.webp 5 6 4 2 3 1

./sample/93.webp 5 6 4 2 3 1

./sample/94.webp 5 6 3 2 4 1

./sample/95.webp 5 6 4 1 3 2

./sample/96.webp 5 6 4 1 3 2

./sample/97.webp 5 6 4 1 3 2

./sample/98.webp 6 5 4 2 3 1

./sample/99.webp 5 6 4 2 3 1

Mean 5.22 5.77 3.54 1.66 3.47 1.34

Std 0.41 0.44 0.52 0.47 0.50 0.47
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 5: Texture removal. Visual comparison of texture removal with or without the EAP frame-
work.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 6: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 7: Texture removal. Visual comparison of texture removal with or without the EAP frame-
work.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 8: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 9: Texture removal. Visual comparison of texture removal with or without the EAP frame-
work.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 10: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 11: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 12: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 13: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 14: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 15: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 16: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 17: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 18: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 19: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 20: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 21: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 22: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 23: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 24: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 25: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 26: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 27: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 28: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 RTV L1

 EAP + L0 EAP + RTV EAP + L1
Figure 29: Texture removal. Visual comparison of texture removal with or without the EAP
framework.
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Source L0 (extreme parameter λ=0.1) RTV (extreme parameter λ=0.2)L1 (extreme parameter λ=5)

 L0 (repeat 10 times) RTV (repeat 10 times) L1 (repeat 10 times)

 (default official parameters) (default official parameters) (default official parameters)

Figure 30: Texture removal. Trying to fine tune existing methods to facilitate adequate smoothing.
The EAP results cannot be achieved by tuning parameters of existing methods or repeating existing
methods for multiple times.
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Source L0 L0 (extreme smoothing weight λ=0.1)

L1 (extreme smoothing weight λ=5)L1 EL1

EL0

Figure 31: Texture removal. The visual effect of EAP cannot be achieved by tuning smoothing
parameters of previous methods. We provide several smoothed results using previous methods and
extreme parameters. The EAP achieves results significantly better than that from extremely tuned
previous methods.
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Source DL1 DL1(shadow) DL1(specular reflection)

 EDL1 EDL1(shadow) EDL1(specular reflection)
Figure 32: Layer decomposition. Visual comparison of layer decomposition with or without the
EAP framework.
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Source DL1 DL1(shadow) DL1(specular reflection)

 EDL1 EDL1(shadow) EDL1(specular reflection)
Figure 33: Layer decomposition. Visual comparison of layer decomposition with or without the
EAP framework.
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Source DL1 DL1(shadow) DL1(specular reflection)

 EDL1 EDL1(shadow) EDL1(specular reflection)
Figure 34: Layer decomposition. Visual comparison of layer decomposition with or without the
EAP framework.
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Source DL1 DL1(shadow) DL1(specular reflection)

 EDL1 EDL1(shadow) EDL1(specular reflection)
Figure 35: Layer decomposition. Visual comparison of layer decomposition with or without the
EAP framework.
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Source DL1 DL1(shadow) DL1(specular reflection)

 EDL1 EDL1(shadow) EDL1(specular reflection)
Figure 36: Layer decomposition. Visual comparison of layer decomposition with or without the
EAP framework.
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Source DL1(shading) EDL1(shading)

DL1(shading inverted) EDL1(shading inverted)

Figure 37: Illumination manipulation. Visual comparison of gamma corrected shading map
inverting with or without the EAP framework.
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Source CGIntrinsics GloSH Bell

 EBell EL1 EDL1

Figure 38: Intrinsic decomposition. Visual comparison of intrinsic reflectance extraction with or
without the EAP framework, without hue/saturation constraint. (The reflectance is not required to
have same pixel hue and saturation with source images.)
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Source CGIntrinsics GloSH Bell

 EBell EL1 EDL1

Figure 39: Intrinsic decomposition. Visual comparison of intrinsic reflectance extraction with or
without the EAP framework, with hue/saturation constraint. (The reflectance is required to have same
pixel hue and saturation with source images. The hue and saturation channels in all reflectance maps
are replaced by the original hue and saturation in the source image.)
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Source CGIntrinsics GloSH Bell

 EBell EL1 EDL1

Figure 40: Intrinsic decomposition. Visual comparison of intrinsic reflectance extraction with or
without the EAP framework, without hue/saturation constraint. (The reflectance is not required to
have same pixel hue and saturation with source images.)
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Source CGIntrinsics GloSH Bell

 EBell EL1 EDL1

Figure 41: Intrinsic decomposition. Visual comparison of intrinsic reflectance extraction with or
without the EAP framework, with hue/saturation constraint. (The reflectance is required to have same
pixel hue and saturation with source images. The hue and saturation channels in all reflectance maps
are replaced by the original hue and saturation in the source image.)
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 42: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 43: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 44: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 45: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 46: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 47: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 48: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 49: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 50: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 51: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 NBell NDL1
Figure 52: Specular reflection removal. Visual comparison of specular reflection removal using
different intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 NBell NDL1
Figure 53: Shadow enhancement. Visual comparison of shadow enhancement using different
intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 54: Shadow enhancement. Log-distance map between shadow enhancement map and
naive gamma correction map. This distance is computed as the log-space distance Ddistance =
log Yenhanced − logXk with Yenhanced being the shadow-enhanced map and Xk is the k-gamma-
corrected image (k = 2.0). This distance reflects to what extant the enhanced shadows are meaningful
and different from the naive gamma corrections. Working in log space prevents zero division and
yields results faithful to the irradiance models in previous intrinsic literature. We visualize the
negative part (or called the shadow part) of this measurement.
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Source CGIntrinsics GloSH Bell

 DL1 NBell NDL1
Figure 55: Shadow enhancement. Visual comparison of shadow enhancement using different
intrinsic decomposition methods.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 56: Shadow enhancement. Log-distance map between shadow enhancement map and
naive gamma correction map. This distance is computed as the log-space distance Ddistance =
log Yenhanced − logXk with Yenhanced being the shadow-enhanced map and Xk is the k-gamma-
corrected image (k = 2.0). This distance reflects to what extant the enhanced shadows are meaningful
and different from the naive gamma corrections. Working in log space prevents zero division and
yields results faithful to the irradiance models in previous intrinsic literature. We visualize the
negative part (or called the shadow part) of this measurement.
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Figure 57: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Figure 58: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Figure 59: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Figure 60: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Figure 61: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Figure 62: Erasing position visualization. Extended E visualization as in the main paper. In the
first row are the smoothed results using EDL1 at iteration 0, 1, 3, and 7. In the second row is the
visualized erasing sets E , marked in green. Please refer to main article for expositions.
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Source CGIntrinsics GloSH Bell

 DL1 EBell EDL1
Figure 63: Limitation. The specular reflection removal causes unrealistic result in this example.
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