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PLEASE VIEW THE ATTACHED VIDEO

1 TSR Benchmark

We curated a challenging dataset of 25 LTR (low temporal resolution) videos of very
complex fast dynamic scenes, as if recorded by a ‘slow’ video camera (30 fps with
full inter-frame exposure time). These videos contain complex scene dynamics, highly
non-rigid motions, severe motion-blurs and/or severe motion-aliasing. Fig. 1 (in this
document) shows a sample frame from each video, and Table 1 (in this document)
summarises the lengths and frame sizes of the HTR (high temporal resolution) ground-
truth videos.

The dataset was generated from 25 very different real videos recorded with high
speed (mostly 240 fps) consumer cameras. Some of these videos were downloaded from
the web, and some taken from the Need-for-Speed [4] benchmark. The LTR videos
were generated from these HTR videos by blurring and sub-sampling them in time
by a factor of 8 (by averaging every 8 frames). This is equivalent to a ‘slower’ video
camera recording the same dynamic scene, with full inter-frame exposure-time, at 1/8
framerate (30 fps). These LTR videos were fed as inputs to the different algorithms.

We further split our dataset into two groups: (i) 13 extremely challenging videos,
not only with severe motion blur, but also with severe motion aliasing and/or complex
highly non-rigid motions (e.g., splashing water, flickering fire, etc.); (ii) 12 less chal-
lenging videos, still with sever motion blur, but mostly rigid motions. This was done in
order to highlight the type of videos that benefit the most from Internal-Learning.

Table 2 (in this document) lists the average per-frame PSNR, structural similarity
(SSIM), and a perceptual measure (LPIPS [5]), computed for each method on each
video. To avoid boundary effects we did not include the first and last 30 frames of each
sequence. We also disregarded a 20-pixel boundary around each frame when computing
per-frame PSNR. This wide masking of the boundaries was done to accommodate large
margin that some of the other algorithms require.

The results in Table 2 (of this document) indicate that sophisticated frame-interpolation
methods (DAIN [1],NVIDIA SloMo [2]) are not adequate for the task of Temporal Su-
per Resolution (TSR), and are significantly inferior (-1 dB) on LTR videos compared to
dedicated TSR methods (Ours and Flawless [3]). Flawless and Ours provide compara-
ble quantitative results on the dataset, even though Flawless is a pre-trained supervised



045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

ECCV
#132

ECCV
#132

2 ECCV-20 submission ID 132

Fig. 1: Representative frames of the TSR benchmark: One frame from each LTR
video in the benchmark. The video numbering is consistent with that used in all the
tables of this document. Red frames mark the subset of more challenging videos.
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Table 1: Details of the TSR Benchmark: Lengths and frame sizes of the HTR videos.

method, whereas Ours is unsupervised and requires no prior training examples. More-
over, on the subset of extremely challenging videos (with highly complex non-rigid
motions), our Zero-Shot TSR outperforms the state-of-the-art externally trained Flaw-
less [3]. Since rigid motions are easier to model and capture in an external training set,
Flawless provided high-quality results (better than ours) on the videos which are domi-
nated by rigid motions. However, even in those videos, when focusing on the areas with
non-rigid motions, our method visually outperforms the externally trained Flawless.
While these non-rigid areas are smaller in those videos (hence have negligible effect on
PSNR), they often tend to be the salient and more interesting regions in the frame. Such
examples can be found in the Supplementary-Video (e.g., the billiard-ball in Video-16,
the hula-hoop in Video-20, the person performing a back-flip in Video-25, etc.), as well
as in Fig.1 of the paper.

2 Ablation Study

Table 3 (in this document) details the ablation study designed to examine the power
of cross-dimension augmentations for all videos in the dataset. It compares the per-
formance of our network when: (i) Training only on examples from same-dimension
(‘Within’); (ii) Training only on examples across-dimensions (‘Across’); (iii) Training
each video on its best configuration – ‘within’, ‘across’, or on both.

Since our atomic TSRx2 network is trained only on a coarse spatial scale of the
video, we performed the ablation study at that scale (hence the differences between the
numeric values in Tables 2 and 3). Table 2 indicates that, on the average, the cross-
dimension augmentations are more informative than the within (same-dimension) aug-
mentations. However, since different videos have different preferences, training each
video with its best within and/or across configuration provides a small additional over-
all improvement. For more details see paper.
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Table 2: Comparing temporal upsampling×8 results on our TSR video dataset.
When applied to LTR videos with severe motion blur and motion aliasing, frame interpolation
methods (e.g., Nvidia SlowMo [2] and DAIN [1]) score significantly lower. However, even meth-
ods trained to overcome such challenges, but were trained on external datasets (Flawless [3]),
struggle on videos that do not represent the typical motions and dynamic behaviors they were
trained on. Videos 1-13 are such challenging examples.
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Table 3: Ablation study: ‘Within’ vs. ‘Across’ examples: Results of our atomic TSRx2
network, when trained on examples extracted from: (i) the same-dimension only (‘Within’);
(ii) across-dimensions only (‘Across’); (iii) best configuration for each video – ‘within’, ‘across’,
or both. Videos 1-13 are the Challenging dataset. The ablation results indicate that on average,
the cross-dimension augmentations are more informative than the within (same-dimension) aug-
mentations, leading to an overall improvement in PSNR, SSIM and LPIPS. However, since dif-
ferent videos have different preferences, training each video with its best ‘within’ and/or ‘across’
configuration can provide a small additional overall improvement.
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