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1 Proofs of Theorems

1.1 Proof of Theorem 1

The Theorem of Cayley representation was first given by Cayley in his paper [1].
However, the old paper is not available online. For convenience, we give a simple
proof here.

Proof. First, we validate that the P is a orthogonal matrix. The condition that
S ∈ SO∗(n) ensures that (I + S) is invertible. Since S is skew-symmetric, so
S>S = −S2 = SS>. Hence we have

P>P = (I + S)−>(I − S)>(I − S)(I + S)−1 (1)

= (I + S>)−1(I − S>)(I − S)(I + S)−1 (2)

= (I − S)−1(I − S> − S − S>S)(I + S)−1 (3)

= (I − S)−1(I − S> − S − SS>)(I + S)−1 (4)

= (I − S)−1(I − S)(I − S>)(I + S)−1 (5)

= (I − S>)(I + S)−1 (6)

= (I + S)(I + S)−1 (7)

= I. (8)

Next, we need to show the uniqueness of the Cayley representation.

P = (I − S)(I + S)−1 (9)

⇐⇒ P (I + S) = I − S (10)

⇐⇒ P + PS = I − S (11)

⇐⇒ S + PS = I − P (12)

⇐⇒ (I + P )S = I − P (13)

⇐⇒ S = (I + P )−1(I − P ) (14)

Therefore, the skew-symmetric matrix S is uniquely represented by P , which
concludes the proof. ut
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1.2 Proof of Theorem 2

Before giving the proof, we would like to recall the definition of connectedness.

Definition 1 (Connectedness) A set of matrices G is said to be connected if
for all A and B in G, there exists a continuous path A(t), 0 ≤ t ≤ 1, lying with
A(0) = A and A(1) = B.

The above definition of connectedness is actually path connectedness in topol-
ogy. Now we begin our proof of Theorem 2.

Proof. Since the identity matrix I ∈ SO∗(n), it suffices to prove that for any
X ∈ SO∗(n), there exists a continuous path A(t), 0 ≤ t ≤ 1, such that A(0) = I
and A(1) = X. For any X ∈ SO∗(n), we have its spectral decomposition

X = P>diag(K1, . . . ,Kq, 1, . . . , 1)P , (15)

where the P ∈ O(n) and 0 ≤ q ≤ n/2, and

Kλ =

(
cos(θλ) − sin(θλ)
sin(θλ) cos(θλ)

)
, θλ ∈ [−π, π), λ = 1, . . . , q. (16)

If we put

Kλ(t) =

(
cos(tθλ) − sin(tθλ)
sin(tθλ) cos(tθλ)

)
, (17)

then the path required is

A(t) = P>diag(K1(t), . . . ,Kq(t), 1, . . . , 1)P . (18)

ut

2 More Results

2.1 Ranking on Sintel and KITTI 2015 Benchmark

The ranking results on the Sintel and KITTI 2015 benchmark can be found at
http://sintel.is.tue.mpg.de/results and http://www.cvlibs.net/datasets/

kitti/eval_scene_flow.php?benchmark=flow. Here we capture the screen-
shot of the ranking results by March 8, 2020.

http://sintel.is.tue.mpg.de/results
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow
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(a) Sintel Final

(b) Sintel Clean

Fig. 1: Ranking results on Sintel and KITTI 2015 benchmark.
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(c) KITTI 2015 - Supervised

(d) KITTI 2015 - Unsupervised

Fig. 1: Ranking results on Sintel and KITTI 2015 benchmark.



Learnable Cost Volume Using the Cayley Representation 5

2.2 More Visualization Results

As shown in Fig. 2 and 3, we compare our method with other methods under
the supervised settings. We can observe that the flow boundary of the dragon in
Fig. 2, which is predicted by VCN+LCV, is better than the other methods and
the flow prediction near the tree (in front of the car) and fence by our method in
Fig. 3 is more accurate compared with those of the others. The flow prediction
for these pixels are are challenging due to the occlusion. LCV explores more
information among channel dimensions, which could help alleviate the problem
of occlusion to some extent.

Inputs

AEPE

PWC-Net

18.948

HD3

19.542

VCN

14.294

VCN+LCV

14.176

Fig. 2: More visualization results on “Market 4” from the Sintel test final pass.
The number under each method name denotes the average end-point error
(AEPE) on the given frames. The estimated flow and error maps are presented on
the left and right sides, respectively. In the error map, the error of the estimated
flow increases from black to white.
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Inputs

Fl-all(%)

PWC-Net

13.87

HD3

6.79

VCN

6.09

VCN+LCV

5.70

Fig. 3: More visualization results on the KITTI 2015 test set. The number under
each method name denotes the Fl-all score on the given frames. The estimated
flow and error maps are presented on the left and right sides, respectively. From
blue to red, the error of the estimated flow increases in the error map.

2.3 More Visualization Result on Challenging Cases

We provide three videos showing the effectiveness of our method in three types
of challenging cases: 1) illumination change; 2) noise; and 3) adversarial patches.
The test videos are from the training set in the KITTI tracking benchmark. We
compare the flow results under the normal setting with those under challenging
settings. We can observer that the flow results of our model in either one of three
challenging cases are temporarily consistent and reasonably good.

2.4 Visualization of the Learned Features

We visualize the feature maps for different eigenvalues in Fig. 4. We find that
boundaries of (moving) objects are salient in the feature map corresponding to
the max eigenvalue while the min eigenvalue mainly corresponds to background
information, which results in more discriminative cost volume and more accurate
flow estimation.
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(a) frame

(b) feature (max eigenvalue)

(c) feature (min eigenvalue)

Fig. 4: The feature maps corresponding to the largest the smallest eigenvalues.
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