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The supplemental materials provide an ablation study of different variations
of our DPDNet in Sec. S1. Sec. S2 provides a brief discussion about defocus blur
and motion blur. Use cases are described in Sec. S3. Sec. S4 provides results
on dual-pixel (DP) data obtained from a smartphone camera. Sec. S5 provides
additional quantitative and qualitative results. Furthermore, as mentioned in
Sec. 3 of the main paper, we provide videos of animated examples that show the
difference between the DP views in the “animated dp examples” directory—
located at the same directory as this pdf file.

S1 Ablation study

In this section, we provide an ablation study of different variations in training
our DPDNet with: (1) an extra input image (Sec. S1.1), (2) less E-Blocks and
D-Blocks (Sec. S1.2), (3) different input sizes (Sec. S1.3), (4) different ratios of
homogeneous region filtering (Sec. S1.4), and (5) different data types (Sec. S1.5).
This is related to Sec. 5 and Sec. 6 of the main paper.

S1.1 DPDNet with extra input image

As described in Sec. 5 of the main paper, our DPDNet takes the two dual-pixel
L/R views, IL and IR, as inputs to estimate the sharp image I∗S. In our dataset, in
addition to the L/R views, we also provide the corresponding combined image IB
that would be outputted by the camera. In this section, we examine training our
DPDNet with all three images, namely IL, IR, and IB. We refer to this variation
as DPDNet(IL, IR, IB).

Table 1 shows the results of the three-input DPDNet, DPDNet(IL, IR, IB),
vs. the two-input one, DPDNet(IL, IR), proposed in the main paper. The results
of all metrics are quite similar with a slight difference. Our conclusion is that
training and testing the DPDNet with the extra input IB provides no noticeable
improvement. Such results are expected, since IB is a combination of IL and IR.
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Method
Indoor Outdoor Combined

PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DPDNet(IL, IR, IB) 27.32 0.842 0.029 0.191 22.94 0.723 0.052 0.257 25.07 0.781 0.041 0.225

DPDNet(IL, IR) 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223

Table 1: DPDNet with extra input image. The quantitative results of
DPDNet(IL, IR, IB) vs. DPDNet(IL, IR, ) using four metrics. The testing on the
dataset is divided into three scene categories: indoor, outdoor, and combined.
The best results are in bold numbers. The results of DPDNet(IL, IR, IB) and
DPDNet(IL, IR, ) are quite similar with a slight difference. Note: the testing set
consists of 37 indoor and 39 outdoor scenes.

S1.2 DPDNet with less blocks

In this section, we train a “lighter” version of our DPDNet with less E-Blocks
and D-Blocks. This is done by reducing E-Block 1 and D-Block 4. We refer
to this light version as DPDNet-Light. In Table 2, we provide a comparison of
DPDNet-Light and our full DPDNet that is proposed in the main paper.

Table 2 shows that our full DPDNet has a better performance compared to
the lighter one. Nevertheless, the sacrifice in performance is not too significant,
which implies that the DPDNet-Light could be an option for environments with
limited computational resources.

Method
Indoor Outdoor Combined

PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DPDNet-Light 27.08 0.824 0.030 0.225 22.81 0.701 0.053 0.309 24.89 0.761 0.042 0.268

DPDNet 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223

Table 2: DPDNet with less blocks. The quantitative results of DPDNet-Light
vs. our full DPDNet using four metrics. The testing on the dataset is divided
into three scene categories: indoor, outdoor, and combined. The best results are
in bold numbers. Our full DPDNet has the best results on all metrics for differ-
ent categories. Nevertheless, DPDNet-Light can operate with less computational
power and produce acceptable deblurring results. Note: the testing set consists
of 37 indoor and 39 outdoor scenes.

S1.3 DPDNet with different input sizes

Our DPDNet is a fully convolutional network. This facilitates training with dif-
ferent input patch sizes with no change required in the network architecture. As
such, we consider training with two different patch sizes, namely 256×256 pixels
and 512 × 512 pixels referred to as DPDNet256 and DPDNet512, respectively.
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Table 3 shows that the two different input sizes perform similarly. Particu-
larly, input patch size does not change the performance drastically as long as it
is larger than the blur size.

Method
Indoor Outdoor Combined

PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DPDNet256 27.28 0.847 0.029 0.195 22.86 0.734 0.050 0.257 25.01 0.789 0.040 0.227

DPDNet512 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223

Table 3: DPDNet with different input sizes. The quantitative results of
DPDNet256 vs. DPDNet512 using four metrics. The testing on the dataset is
divided into three scene categories: indoor, outdoor, and combined. The best
results are in bold numbers. Both input sizes perform on par, in which the patch
size does not change the performance drastically as long as it is larger than the
blur size. Note: the testing set consists of 37 indoor and 39 outdoor scenes.

S1.4 DPDNet with different filtering ratios

Homogeneous patches are inherently ambiguous in terms of incurred blur size,
and do not provide useful information for network training [5]. As a result,
filtering homogeneous patches can be beneficial to the trained network. In this
section, different filtering ratios are examined including: 0%, 15%, 30%, and
45%; we refer to them as DPDNet0%, DPDNet15%, DPDNet30%, DPDNet45%,
respectively.

In Table 4, we present the results of different filtering ratios. The 30% filtering
is a reasonable ratio that has the best quantitative results. Therefore, we filter
30% of the extracted image patches based on the sharpness energy to train our
proposed DPDNet as described in Sec. 6 of the main paper.

S1.5 DPDNet with different data types

Our dataset provides high-quality images that are processed to an sRGB en-
coding with a lossless 16-bit depth per RGB channel. Since we are targeting
dual-pixel information which would be obtained directly in the camera’s hard-
ware, in a real hardware implementation we would expect to have such high
bit-depth images. However, since most standard encodings still rely on 8-bit im-
age, we provide a comparison of training our DPDNet with 8-bit (DPDNet8−bit)
and 16-bit (DPDNet16−bit) input data type.

Based on the numbers in Table 5, DPDNet16−bit has a slightly better perfor-
mance. In particular, it has a lower LPIPS distance for all categories. As a result,
training with 16-bit images is helpful due to the extra information embedded in,
and is more representative of the hardware’s data.
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Method
Indoor Outdoor Combined

PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DPDNet0% 27.21 0.838 0.030 0.205 22.86 0.721 0.051 0.275 24.98 0.778 0.041 0.241

DPDNet15% 27.19 0.840 0.029 0.194 22.94 0.721 0.052 0.254 25.01 0.779 0.041 0.225

DPDNet30% 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223

DPDNet45% 27.21 0.839 0.030 0.194 22.90 0.724 0.051 0.258 25.00 0.780 0.041 0.227

Table 4: DPDNet with different filtering ratios. The quantitative results of
DPDNet0% vs. DPDNet15% vs. DPDNet30% vs. DPDNet45% using four met-
rics. The testing on the dataset is divided into three scene categories: indoor,
outdoor, and combined. The best results are in bold numbers. The 30% filtering
is a reasonable ratio that has the best quantitative results and , thus, we pick it
as a filtering ratio for our proposed framework. Note: the testing set consists of
37 indoor and 39 outdoor scenes.

Method
Indoor Outdoor Combined

PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓ PSNR ↑ SSIM ↑ MAE ↓ LPIPS ↓

DPDNet8−bit 27.37 0.834 0.029 0.196 23.10 0.723 0.052 0.258 25.18 0.777 0.041 0.228

DPDNet16−bit 27.48 0.849 0.029 0.189 22.90 0.726 0.052 0.255 25.13 0.786 0.041 0.223

Table 5: DPDNet with different data types. The quantitative results of
DPDNet8−bit vs. DPDNet16−bit using four metrics. The testing on the dataset
is divided into three scene categories: indoor, outdoor, and combined. The best
results are in bold numbers. DPDNet16−bit has a slightly better performance,
in which it has a lower LPIPS distance for all categories. Note: the testing set
consists of 37 indoor and 39 outdoor scenes.

S2 Defocus and motion blur discussion

One may be curious if motion blur methods can be used to address the defocus
blur problem. While defocus and motion blur both produce a blurring of the
underlying latent image, the physical image formation process of these two types
of blur are different. Therefore, comparing with methods that solve for motion
blur is not expected to give good results. However, for a validity check, we tested
the scale recurrent motion deblurring method (SRNet) in [9] using our testing
set. This method achieved an average LPIPS of 0.452 and PSNR of 20.12, which
is lower than all other existing methods that solve for defocus deblurring. Fig. 1
shows results of applying motion deblurring network SRNet [9] to input image
from our dataset.

S3 Use cases

As discussed in Sec. 1 of the main paper, we described how defocus blur is related
to the size of the aperture used at capture time. The size of the aperture is often
dictated by the desired exposure which is a factor of aperture, shutter speed,
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(a) Blurred input image. (b) Ground truth sharp image.

(c) SRNet [9] output image. (d) Our DPDNet output image.

Fig. 1: Qualitative deblurring results using SRNet [9] and our DPDNet.

and ISO setting. As a result, there is a trade-off between image noise (from ISO
gain), motion blur (shutter speed), and defocus blur (aperture). This trade off
is referred to as the exposure triangle. In this section, we show some common
cases, where defocus deblurring is required.
Moving camera. Global motion blur is more likely to occur with the moving
cameras like hand-held cameras (I1 in Fig. 2-A). One way to handle motion blur
is to set a fast shutter speed and this can be done by either increasing the image
gain (i.e., ISO) or the aperture size. However, higher ISO can introduce noise
as stated in [6] (Fig. 2-B), and wider aperture can introduce undesired defocus
blur as shown in I3 (Fig. 2-C). For such case, we offer two solutions: apply
motion deblurring method SRNet [9] on I1 (result shown in Fig. 2-D) or apply
our defocus deblurring method on I3 (result shown in Fig. 2-E). Our defocus
deblurring method is able to obtain sharper and cleaner image as demonstrated
in Fig. 2-E.
Moving object. In this scenario, we have a stationary camera, with a scene
object that is moving (i.e., Newton’s cradle in Fig. 3). Fig. 3-A shows an image
with motion blur, in which the object speed is higher than the shutter speed. In
Fig. 3-B, the ISO is significantly increased in order to make the shutter speed
faster, nevertheless, the pendulum speed remains the fastest and the motion
blur is pronounced. Another way to increase the shutter speed is to open the
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(C) I3 at 𝑓/8 and 100 ISO 

(B) I2 at 𝑓/22 and 3200 ISO (A) I1 at 𝑓/22 and 100 ISO 

(E) Our defocus deblurring DPDNet(I3,L, I3,R)

0.25 𝑠𝑒𝑐

2 𝑠𝑒𝑐 0.25 𝑠𝑒𝑐

(D) Motion deblurring from SRNet I1 [9]

Fig. 2: Image noise, motion and defocus blur relation with a moving camera. The
number shown on each image is the shutter speed. Zoomed-in cropped patches
are also provided. (A) shows an image I1 suffers from motion blur. (B) shows
an image I2 fixes the motion blur by increasing the ISO, however, I2 has more
noise. (C) shows another image I3 handles the motion blur by increasing the
aperture size, nevertheless, I3 suffers from defocus blur. (D) shows the results of
deblurring I1 using the motion deblurring method SRNet [9]. The image in (E)
is the sharp and clean image obtained using our DPDNet to deblur I3.

aperture wider as shown in Fig. 3-C and this setting handles the motion blur.
However, capturing at wider aperture introduces the undesired defocus blur.
To get a sharper image, we can use the motion deblurring method SRNet [9]
to deblur I1 (result shown in Fig. 3-D) and I2 (result shown in Fig. 3-E), or
apply our defocus deblurring method on I3 (result shown in Fig. 3-F). Our
defocus deblurring method is able to obtain sharper image compared to motion
deblurring method as demonstrated in Fig. 3-F.

S4 DPDNet performance for a smartphone DP sensor

In this section, we test our DPDNet on images captured with a smartphone. As
we mentioned in Sec. 4 of the main paper, there are two camera manufacturers
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(F) Our DPDNet(I3,L, I3,R)

(C) I3at 𝑓/4 and 3.2k ISO 

0.0025 𝑠𝑒𝑐

(A) I1at 𝑓/22 and 3.2k ISO 

0.33 𝑠𝑒𝑐

(B) I2at 𝑓/22 and 16k ISO 

0.04 𝑠𝑒𝑐

(D) Motion deblurring SRNet(I1) [9] (E) Motion deblurring SRNet(I2) [9]

Fig. 3: Motion and defocus blur relation with a moving object. The number
shown on each image is the shutter speed. (A) shows an image I1 has a moving
object that suffers from motion blur. Image I2 in (B) tries to fix the motion blur
by increasing the ISO, but the motion blur is still pronounced. I3 in (C) handles
the motion blur by setting the aperture wide, nevertheless, it introduces defocus
blur. (D) and (E) show the results of deblurring I1 and I2, respectively, using the
motion deblurring method SRNet [9]. The image in (F) is sharp and obtained
by drblurring I3 using our DPDNet.

that provide DP data, namely, Google Pixel 3 and 4 smartphones and Canon
EOS 5D Mark IV DSLR. The smartphone camera currently has limitations that
make it challenging to train the DPDNet with. First, the Google Pixel smart-
phone cameras do not have adjustable apertures, so we are unable to capture
corresponding “sharp” images using a small aperture as we did with the Canon
camera. Second, the data currently available from the Pixel smartphones are not
full-frame, but are limited to only one of the Green channels in the raw-Bayer
frame. Finally, the smartphone has a very small aperture so most images do
not exhibit defocus blur. In fact, many smartphone cameras synthetically apply
defocus blur to produce the shallow DoF effect.

As a result, the experiments here are provided to serve as a proof of concept
that our method should generalize to other DP sensors. To this end, we examined
DP images available in the dataset from [1] to find images exhibiting defocus
blur. The L/R views of these images are available in the “animated dp examples”
directory—located at the same directory as this pdf file.

To use our DPDNet, we replicate the single green channel to be 3-channel
image to match our DPDNet input. Fig. 4 shows the deblurring results on images
captured by Pixel camera. The image on the left is the input combined image
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Method
Average LPIPS ↓

DP L view DP R view

EBDB [3] 0.342 0.337

DMENet [4] 0.355 0.353

JNB [8] 0.322 0.313

Our DPDNet 0.223

Table 6: Average LPIPS evaluation of a single DP view separately.

Method Average LPIPS ↓

EBDB [3] 0.229

DMENet [4] 0.216

JNB [8] 0.207

Our DPDNet 0.104

Table 7: Average LPIPS evaluation of the images used to test DPDNet robust-
ness to different aperture settings.

and the image on the right is the deblurred one using our DPDNet. Note that
the Pixel android application, used to extract DP data, does not provide the
combined image [2]. To obtain it, we average the two views. Fig. 4 visually
demonstrates that our DPDNet is able to generalize and deblur for images that
are captured by the smartphone camera. Because it is not possible to adjust
aperture on the smartphone camera to capture a ground truth image, we cannot
report quantitative numbers. The results of two more full images are shown in
Fig. 5.

S5 More results

Quantitative results. In Table 6, we provide evaluation of other methods on a
single DP view separately using the average LPIPS. Note that a single DP L or R
view is formed with a half-disc point spread function in the ideal case. When the
two views are combined to form the final output image; the blur kernel would
look like a full-disc kernel [7]. Non-blind defocus deblurring methods assume
full-disc kernel and the blur kernel of the combined image aligns more with
their assumption. More details about DP view formation and modeling DP blur
kernels can be found in [7].

In addition to above, we report in Table 7 the average LPIPS numbers for
other methods on the images used to test DPDNet robustness to different aper-
ture settings. Note that the LPIPS numbers here are lower than numbers in
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Table 1 of the main paper. The reason is that for the robustness test we used
f/10 and f/16, which results in less defocus blur compared to the images captured
at f/4 (a much wider aperture than f/10 and f/16).
Qualitative results. As we mentioned in Sec. 6 of the main paper, we pro-
vide more qualitative results of the full image from the testing set. Specifically,
there are 14 examples presented in Fig. 6–Fig. 19. For better visual compar-
isons, we also provide the corresponding animated video for each example in the
“animated results” directory—located at the same directory as this pdf file.
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(A) (B)

(C) (D)

Examples from the Pixel DP dataset [1] 

(A) (B)

(C) (D)

Examples we captured using Pixel 4

Fig. 4: The results of using our DPDNet to deblur images captured by Pixel
smartphone camera. The image on the left is the combined input image with
defocus blur and the one on the right is deblurred one. Our DPDNet is able to
generalize well for images captured by a smartphone camera.
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(a) Blurred input image. (b) Our DPDNet output image.

(c) Blurred input image. (d) Our DPDNet output image.

Fig. 5: Qualitative deblurring results using our DPDNet for images captured by
a smartphone camera.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 6: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 7: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 8: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 9: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 10: Qualitative defocus deblurring results using our DPDNet.



Defocus Deblurring Using Dual-Pixel Data 17

(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 11: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 12: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 13: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 14: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 15: Qualitative defocus deblurring results using our DPDNet.



22 A. Abuolaim et al.

(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 16: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 17: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 18: Qualitative defocus deblurring results using our DPDNet.
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(a) Blurred input image.

(b) Predicted sharp image using our DPDNet.

(c) Ground truth sharp image.

Fig. 19: Qualitative defocus deblurring results using our DPDNet.
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