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1 Visual Knowledge Discovery

In this section, we provide more visual responsive results from the three inde-
pendent CNNs, Ωo, Ωf , and Ωb. As shown in Fig. A(a), for many base samples,
such as “Mousetrap”, “Hamster”, “Balloon”, “French Horn”, “Drake”, “Acous-
tic Guitar”, “Tricycle”, and “Radio Telescope”, it is easy to see that Ωo and Ωf

focus on the regions of the objects, and Ωb concentrates on the bodies or edges
of these objects. By the way, in the “Acoustic Guitar” image, Ωb can find more
guitars with their shapes in the background. On the other hand, these CNNs
perform differently on many novel samples as shown in Fig. A(b) and Fig. A(c).
For the novel samples in Fig. A(b), the responses of Ωo are deviated from the
objects like “Scuba Diver”, “Beigel”, “Palace”, “Mailbox”, “Goblet”, “Cicada”,
“Basketball”, and “Pencil Sharpener”. When Ωf is used, we can see that the
responses on these instances are shifted to the bodies of the objects. Then we
show the importance of Ωb in Fig. A(c). For many other novel samples, such
as “Cassette”, “Valley”, “Parachute”, “Space Heater”, “Marimba”, “Radiator”,
“Microwave Oven”, and “Home Theater” images, the objects may be segmented
as the backgrounds by the unsupervised saliency detection [4]. Thus, Ωb is nec-
essary to extract useful features from the backgrounds in these cases. It is worth
mentioning that, as shown in Fig. A(b), for the objects “Palace”, “Mailbox”,
“Basketball”, and “Pencil Sharpener”, the responses of both Ωf and Ωb are
useful to describe the objects.

2 Textual Knowledge Discovery

In this section, we list more examples of the results by the network with the
textual knowledge discovery (denoted as “LCE + LSemantic”) and the network
without it (denoted as “LCE Only”) in Fig. B. Compared with the predictions
of “LCE Only”, the predicted results of “LCE + LSemantic” are more relevant to
the input objects. For example, when the input novel image is a kind of car (“Tow
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Fig.A. The responsive regions of three CNNs (ResNets-50 [2]) visualized by Grad-
CAM [3] from several novel samples in ImageNet-FS [1].
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Fig. B. The recognition results of several novel samples by the networks with and
without the textual knowledge discovery, denoted as “LCE + LSemantic” and “LCE

Only”, respectively. In this experiment, K = 1. We randomly select one image from
each label category for easy understanding of the objects corresponding to the labels.



4 Wang et al.

Truck” here), all the top 5 results by “LCE +LSemantic” are car labels. Although
the 6th and the 7th results (“Fountain” and “Catamaran”) by “LCE +LSemantic”
are not relevant, its overall ranking of the top 7 results is better than that by
“LCE Only”.
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