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1 Overview

We provide additional analysis and qualitative shadow removal results of our
proposed framework. In particular:

— We provide more examples of the components extracted from our frame-
work [5].

— Ablation Studies: We visualize the learned components of our framework for
the ablation studies described in the main paper.

— We evaluate the shadow removal performance of our method using different
sets of shadow masks.

— We provide the shadow removal results of our model in comparison with
state-of-the-art methods using ground truth images at the original scale.

— We provide a direct comparison of our method to the state-of-the-art method
SP-M+Net [4].

— In addition to this document, we provide two videos showing the shadow
removal results of our method in comparison with MaskShadow-GAN(3],
and SP+M-Net [4] on two testing videos.

2 Components Visualization

Fig. 1 visualizes the components extracted from our framework. From the left to
right are the input shadow patches, the relit images computed from the shadow
parameters, the matte layers, and the output image patches. The figure shows
that our method can automatically learn to accurately decompose the shadow
effect in the input image patch into a matte layer and a relit image. This is
achieved with only the adversarial loss obtained from D-Net. It can be seen from
the figure that our framework performs shadow removal properly: the relit images
I7¢U have pixels in the shadow areas correctly lit to their non-shadow values
and the matte layers a accurately model the shadow effects on the penumbra
areas.
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Fig.1: Shadow Image Decomposition. Our method automatically learns to
decompose the shadow effect in the input image patch I°? into a matte layer o
and a relit image 17!, The matte layer a combines I°? and 1" to obtain a
shadow-free image patch JoufPut,

3 Ablation Studies.

We visualize the components extracted from our framework trained with each
proposed components removed, one at a time. The quantitative results of these
ablation studies are presented in the main paper - Table 2.
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Matting Loss - L4t—o- Fig. 2 visualizes the extracted relit images and
the matte layers of our framework when we remove the matting loss L,,4t—q-
Without this matting loss, Param-Net outputs consistently high values while
Matte-Net tends to perform image inpainting to disguise the shadow effects,
modifying both the shadow and non-shadow areas of the images.
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Fig.2: Ablation Study - Matting Loss L,,4:—o- The components extracted
from our model trained when omitting the matting loss from the original setting.
From left to right: Input shadow image patch, the relit image, the matte layer,
and the output image obtained when the matting loss is omitted.

GAN Loss - Lgan. Fig. 3 shows the components learned by our model
when omitting the GAN loss. This model is trained using the proposed physical
constraints, which limit the framework to only modify the images in a manner
that is similar to shadow removal, i.e., all shadowed pixels are lit uniformly
without introducing new artifacts and the textures beneath the shadow areas
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are preserved. There are visible boundary artifacts and the shadowed pixels are
not relit to the appropriate values.
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Fig.3: Ablation Study - GAN Loss Lg4n. The components extracted from
our model trained when omitting the GAN loss from the original setting. From
left to right: Input shadow image patch, the relit image, the matte layer, and the
output image obtained when the GAN loss is omitted. There are visible boundary
artifacts and the shadowed pixels are not relit to the appropriate values.

Smoothness Loss - L,,_,. Fig. 4 shows the components learned by our
model when omitting the smoothness loss. Note that omitting the smoothness
loss L, only results in a slight drop in shadow removal performance, from 9.7
to 10.2 RMSE on the shadow areas. However, we observe more visible boundary
artifacts on the output images without this loss, as clearly shown in Fig. 5.
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Fig.4: Ablation Study- smoothness Loss L,,_.. The components extracted
from our model trained when omitting the smoothness loss from the original
setting. From left to right: Input shadow image patch, the relit image, the matte
layer, and the output image obtained when the smoothness loss is omitted. There
are more visible boundary and image artifacts without this loss. More shadow
removal examples for this ablation study are provided in Fig. 5

Boundary Loss - £,4 and limiting the parameters search space. Figs.
6 and 7 show that the model collapses when we omit the boundary loss L4 or
when we do not bound the search space of the shadow parameters to a proper
range. In Fig. 6, Param-Net outputs consistently high values. In Fig.7, there is
no meaningful mapping being learned.
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4 Analysis of Shadow Mask Quality.

We evaluated the shadow removal performance of our method using different
sets of shadow masks. We used as shadow detector the model proposed by Zhu
et al.[10] pre-trained on the SBU dataset [7] (publicly available by the authors).
We fine-tuned this model on the ISTD training set for 3000 epochs, and acquired
a 2.2 balance-error-rate (BER) on the ISTD testing set. We used two snapshots
of the model during the fine-tuning at epochs 1000 and 2000 to output two sets
of shadow masks, which achieved a 4.1 BER and 3.1 BER respectively on the
ISTD testing set. Last, we evaluated the performance of our model using the
ground truth shadow masks.

Table 1 reports the shadow removal performance of our models using different
sets of shadow masks. The results of our model improve with better sets of
shadow masks.

Table 1: Our Shadow Removal using different sets of shadow masks. The
shadow masks are generated by three snapshots of the shadow detector proposed
by Zhu et al.[10] pre-trained on the SBU dataset [7] and fine-tuned on the the
ISTD dataset for 1000, 2000, and 3000 epochs. The RMSE are shown for the
shadow area, non-shadow area, and the whole image. All images are resized to
256 x 256. The last row shows the results of our model using the actual ground
truth shadow masks.

Epoch BER‘Shad. Non-Shad. All
1000 4.1 1 10.0 3.7 4.7
2000 3.1 9.6 3.0 4.0
3000 2.2 | 9.7 3.0 4.0

GT Shad. Masks 0 | 9.1 2.6 3.6
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Fig.5: The effect of the smoothness loss L;,,_, on the output images of
our framework. Without the smoothness loss, there are more visible boundary
artifacts on the output images.
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Fig.6: Ablation Study - boundary Loss L;4. The components extracted from
our model trained when omitting the boundary loss from the original setting.
From left to right: Input shadow image patch, the relit image, the matte layer,
and the output image obtained when the boundary loss is omitted.
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Fig.7: Ablation Study: no limits on search space. The components ex-
tracted from our model trained when we set the search space of the scaling fac-
tor w to [—10,10] and the search space of the additive constant b to [—255, 255].
From left to right: Input shadow image patch, the relit image, the matte layer,
and the output image obtained when the search space is not limited.
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5 Shadow Removal Evaluation on the original size ground
truth images.

Previous works [8, 6, 4] evaluate shadow removal performances on ground truth
images resized to 256x 256. However, different resizing techniques might cause
inconsistent shadow removal evaluations. To avoid this, we compare the shadow
removal performance of our methods to other state-of-the-art methods on the
ground truth images at the original scale (480 x 640) in Table 2. Each method
originally outputs the results at a different size, as shown in the second column.
We resize all images to 480 x 640 using bi-linear interpolation.

Table 2: Shadow removal results of our networks in comparison with
state-of-the-art methods for shadow removal on the ground truth im-
ages at the original scale (480 x 640). The metric is RMS error (the lower, the
better). The RMS errors are shown for the shadow area, non-shadow area, and
the whole image. All images are resized to 480 x 640 via bi-linear interpolation.

Methods Output Size Shadow Non-Shadow All
Input Image - 40.4 3.3 9.1
Yang et al. [9] 600 x 600 25.3 15.2 16.8
Guo et al. [2] 640 x 640 22.3 4.3 7.1
Gong et al. [1] 480 x 640 14.4 - -

ST-CGAN et al.[8] 256 x 256 14.0 8.6 9.5
DeshadowNet [6] 256 x 256 16.3 7.5 8.9
MaskShadow-GAN [3] 480 x 640 13.1 5.0 6.3
SP+M-Net [4] 512 x 512 8.5 3.6 4.4
Ours 480 x 640 10.5 3.7 4.8

6 Direct comparison to SP+M-Net.

We provide a direct comparison to SP+M-Net. Fig. 8 shows a histogram of per-
image RMSE differences on the shadow areas between our method and SP+M-
Net. The values are computed by taking RMSE,,s — RMSEgspyp—net for all
images in the ISTD testing set [8] (540 images in total). A negative value means
our method is better and a positive value means the opposite. It shows that
we are comparable to SP+M-Net even though our method is trained with only
shadow masks and SP+M-Net is trained fully-supervised: Most of the values are
in the range [-2,2]. We perform better than SP+M-Net in 156/540 images. Fig.
9 shows some of these examples. It is clear that our method relit the shadowed
pixels more accurately.
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Fig.8: Comparison between our method and SP+M-Net [4]. The his-
togram of per-image RMSE differences between our method and SP+M-Net.
The values are computed by taking RMSE,,,s — RMSEspyp—net for all im-
ages in the ISTD testing set [8]. A negative value means our method is better
and a positive value means the opposite. It shows that we are comparable to
SP+M-Net even though our method is trained with only shadow masks and
SP+M-Net is trained fully-supervised.

7 Video Shadow Removal Results.

In additional to this document, we include two videos showing the shadow re-
moval results of our method in comparison with MaskShadow-GAN [3] and
SP+M-Net [4] on two videos, namely “tower” and “slovenkia”. Both videos show
that our proposed video shadow removal dataset is an extremely challenging test
for shadow removal methods. All methods fail to remove the shadows or handle
the shadow boundaries completely.

The results shown in the videos were obtained by frame-by-frame shadow
removal. No motion cue was used. No temporal coherence was enforced. Our
method, albeit not perfect, is able to remove shadows from these videos better
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than the other methods. MaskShadow-GAN only mildly removes shadows in
both videos while SP+M-Net is not able to perform in the several last frames of
the video “slovenkia” where the shadow areas occupy the majority of the images.
On the other hand, our method is affected by the imperfect shadow masks as
can be seen in “tower” where some shadow areas are not detected consistently
throughout the videos, creating the “flickering” effects on the bottom left corner.
We believe this is an interesting problem for future research.
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Fig.9: Comparison between our method and SP+M-Net. SP+M-Net is
trained fully supervised while we only need shadow masks. Our method outper-
forms SP+M-Net in these casse.
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