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This supplementary material is organized as follows. We first present depth
refinement results on KITTI Odometry sequences in Sec. 1. Next, we give a
comparison of our pose refinement with state-of-the-art RGB SLAM approaches
in Sec. 2. We further evaluate pose refinement on KITTI Leaderboard in Sec.
3. Additional implementation details and qualitative results of TUM RGB-D
experiments are included in Sec. 4. Additional analysis of the self-improving loop
with all the 7 depth evaluation metrics is presented in Sec. 5. Some additional
qualitative depth evaluation results of KITTI Eigen experiments and pose evalu-
ation results of KITTI Odometry experiments are presented in Sec. 6 and Sec. 7
respectively. Finally, we provide some demo videos1 on KITTI Odometry and
TUM RGB-D sequences in Sec. 8.

1 Depth Refinement Evaluation on KITTI Odometry

We evaluate the depth refinement step of our self-improving pipeline on KITTI
Odometry sequences 09 and 10. The first block (i.e.MonoDepth2-M vs pRGBD-
Refined) of the Tab. S1 shows the improved results after the depth refinement
step. We also compare our method with a state-of-the-art depth refinement
method DCNF [11]. Note: DCNF [11] uses ground-truth depths for pre-training
the network, while our method uses only unlabelled monocular images, and still
outperforms DCNF (see second block of the Tab. S1). The result shows that our
self-improving framework with the wide-baseline losses (i.e., symmetric depth
transfer and depth consistency losses) improves the depth prediction.

2 Comparison with State-Of-The-Art SLAM Methods

In this section, we compare our pRGBD-Initial and pRGBD-Refined methods
against state-of-the-art RGB SLAM methods, i.e., Direct Sparse Odometry
(DSO) [1], Direct Sparse Odometry with Loop Closure (LDSO) [3], and Direct
Sparse Odometry in Dynamic Environments (DSOD) [7]. The results are shown
in Tab. S2. From the results, it is evident that our pRGBD-Refined outperforms

1 Demo videos: https://tiny.cc/pRGBD
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Table S1. Qualitative depth evaluation on KITTI Odometry sequences 09 and 10.
M: self-supervised monocular supervision for fine-tuning. ‘-’ means the result is not
available from the paper. Our results are after 5 self-improving loops. Note: DCNF [11]
uses ground-truth depths for pre-training. Best results in each block is in bold.

Depth Lower is better Higher is better
Method Train Cap Abs Rel Sq Rel RMSE RMSE log2 a1 a2 a3
MonoDepth2-M [5] M 80 0.123 0.703 4.165 0.188 0.854 0.956 0.985
pRGBD-Refined M 80 0.121 0.649 3.995 0.184 0.853 0.960 0.986
DCNF [11] M 20 0.112 - 2.047 - - - -
pRGBD-Refined M 20 0.098 0.242 1.610 0.145 0.906 0.978 0.993

all the competing methods in Absolute Trajectory Error (RMSE) and Relative
Translation (Rel Tr) Error . While the improvement in Absolute Trajectory Error
(RMSE) and Relative Translation (Rel Tr) error is substantial, the performance
in Relative Rotation (Rel Rot) is not comparable. The higher Rel Rot errors
of our method compared to other RGB ORB-SLAM methods could be due
to the high uncertainty of CNN-predicted depths for far-away points, which
affects our rotation estimation [6]. However, if we compare Rel Rot error of
pRGBD-Initial with the pRGBD-Refined, as depth prediction improves (see Tab.
S1 MonoDepth2-M/pRGBD-Initial vs pRGBD-Refined) the Rel Rot error also
improves (see Tab. S2 ).

Table S2. Comparison with state-of-the-art RGB SLAM methods on KITTI Odometry
sequences 09 and 10. Here, - means the result is not available from the original paper.
∗ denotes the result is obtained from [7].

Seq. 09 Seq. 10
Method RMSE Rel Tr Rel Rot RMSE Rel Tr Rel Rot

RGB ORB-SLAM[8] 18.34 7.42 0.004 8.90 5.85 0.004
DSO[1] 74.29 72.27∗ 0.002∗ 16.32 80.81∗ 0.002∗

LDSO[3] 21.64 - - 17.36 - -
DSOD[7] - 13.85 0.002 - 13.53 0.002
pRGBD-Initial 12.21 4.26 0.011 8.30 5.55 0.017
pRGBD-Refined 11.97 4.20 0.010 6.35 4.40 0.016

3 KITTI Odometry Leaderboard Results

In the main paper, we keep the default setting from ORB-SLAM, which leads to
tracking failures of all methods in a few sequences (i.e., see Tab. 3 of the main
paper). The KITTI Odometry leaderboard requires the results of all sequences (i.e.,
sequences 11-21) for evaluation. Therefore, we increase the minimum number of
inliers for adding keyframes from 100 to 500 so that our pRGBD-Refined succeeds
on all sequences. We report the results of our pRGBD-Refined on the KITTI
Odometry leaderboard in Tab. S3. Results show our method outperforms the
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competing monocular/LiDAR-based methods both in terms of relative translation
and rotation errors.

Table S3. Quantitative pose evaluation results on KITTI Odometry leaderboard. Note
that we use the estimated trajectories from ORB-SLAM2-S [8] for global scale alignment.
The best performance is in bold.

Method Rel Tr Rel Rot

ORB-SLAM2-S [8] 1.70 0.0028

OABA [2] 20.95 0.0135
VISO2-M [4] 11.94 0.0234
BLO [10] 9.21 0.0163
VISO2-M+GP [4, 9] 7.46 0.0245
pRGBD-Refined 6.24 0.0097

4 Experiments on TUM RGB-D Sequences

4.1 Implementation Details

We pre-train/fine-tune the depth network on image resolution 480 × 320. For
pre-training, we set the learning rate to 10−4 initially, reduce it to 10−5 after
20 epochs, and train for 30 epochs. For fine-tuning, we extract camera poses,
2D keypoints and the associated depths from keyframes while running RGB-D
ORB-SLAM on the training sequences. We fine-tune the depth network with the
fixed learning rate of 10−6. We use the following 6 sequences for pre-training/fine-
tuning: 1. fr3/long office household, 2. fr3/long office household validation, 3.
fr3/sitting xyz, 4. fr3/structure texture far, 5. fr3/structure texture near, 6.
fr3/teddy, and the following 2 sequences for testing: 1. fr3/walking xyz, 2.
fr3/large cabinet validation. Note that these are the only 8 sequences with
provided rectified images among the entire TUM RGB-D dataset.

4.2 Qualitative Results

Fig. S1(a) and Fig. S1(b) shows qualitative pose evaluation results on test
sequences walking xyz and large cabinet validation respectively. The results, show
the increased robustness and accuracy by pRGBD-Refined. In particular, RGB
ORB-SLAM fails on walking xyz, while pRGBD-Refined succeeds and achieves
the best performance on both sequences. Some qualitative depth refinement
results are presented in Fig. S2. It can be seen that the disparity between the
depth values of nearby and farther scene points become clearer, e.g., see depth
around the two monitors.



4 L. Tiwari et al.

(a) fr3/walking xyz (b)fr3/large cabinet validation

Fig. S1. Qualitative pose evaluation results on TUM RGB-D sequences. Note that
RGB ORB-SLAM fails in (a).

(a) RGB (b) pRGBD-Initial (c) pRGBD-Refined

Fig. S2. Qualitative depth evaluation results on TUM RGB-D sequences.

5 Additional Plots of Self-Improving Loop Analysis

In the main paper, we have shown behaviours of 3 depth evaluation metrics
named as (Sq. Rel), (RMSE) and (a2). In this section we present behaviours of
all 7 metrics and pose evaluation metrics. Our analysis in the Sec. 5 of the main
paper holds true with respect to all the 7 depth evaluation metrics.

6 Additional Depth Refinement Qualitative Results

Fig. S4 shows some visual improvements in depth predictions of farther scene
points. Fig. S5 shows some additional qualitative results, where pRGBD-Refined
shows visible improvements at occlusion boundaries and thin objects. The reason
for the improvements is the aggregated cues from multiple views with wider
baselines (e.g., our depth transfer and depth consistency losses) lead to more
well-posed depth recovery.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. S3. Depth/Pose evaluation metrics w.r.t. self-improving loops. (a). Absolute
Relative (Abs Rel) (lower is better) (b). Squared Relative (Sq Rel) (lower is better)
(c). RMSE (lower is better) (d). RMSE Log (lower is better), (e). a1 (higher is better),
(f). a2 (higher is better), (g). a3 (higher is better) and (h) Absolute Trajectory Error
(RMSE) (lower is better). Depth evaluation metrics in (a-g) are computed at different
max depth caps ranging from 30-80 meters.

7 Additional Pose Refinement Qualitative Results

Some additional pose refinement qualitative results are shown in Fig. S6. In all the
three sequences our pRGBD-Refined aligned well with the ground-truth trajectory.
Note that both RGB ORB-SLAM and our pRGBD-Initial fail on sequence 12,
whereas our pRGBD-Refined succeeds, showing the enhanced robustness by our
self-improving framework.
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RGB Monodepth2-M pRGBD-Refined

Fig. S4. Qualitative depth evaluation results on KITTI Odometry test set. Improvement
in depth prediction of farther scene points.

RGB MonoDepth2-M pRGBD-Refined

Fig. S5. Qualitative depth evaluation results on KITTI Raw Eigen split test set.
MonoDepth2-M: MonoDepth2 trained using monocular images,

8 Demo Videos

We include example videos 2 on sequences 11 and 19 of KITTI Odometry (i.e.,
kitti seq 11.mp4 and kitti seq 19.mp4, respectively) and sequence fr3/large cabinet

2 Demo videos: https://tiny.cc/pRGBD



Self-Improving Monocular SLAM and Depth Prediction 7

(a) Seq 11 (b) Seq 12 (a) Seq 15

Fig. S6. Qualitative pose evaluation results on KITTI Odometry sequences. Note that
both RGB ORB-SLAM and pRGBD-Initial fail in (b).

validation of TUM RGB-D (i.e., tum large cabinet validation.mp4 ). In partic-
ular, we illustrate the improvements in depth prediction at frames 140, 352 of
kitti seq 11.mp4, frames 1652, 3248, 3529 of kitti seq 19.mp4, and frames 153, 678
of tum large cabinet validation.mp4. In addition, we highlight the failure of RGB
ORB-SLAM at frame 2985 of kitti seq 19.mp4.
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