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1 Background on Point Cloud Distances

We define a point cloud X ∈ RN×3, as a set of N 3D points, where each
point xi ∈ R3 is represented by its 3D coordinates (xi, yi, zi). In this work,
we focus solely on the perturbations of the input. This means we modify each
point xi by a perturbation variable. Formally, we define the perturbed point set
X ′ = X +∆, where ∆ ∈ RN×3 is the perturbation parameter we are optimizing
for. Consequently, each pair (xi,x′i) are in correspondence.

1.1 Trivial Distances (`p)

The most commonly used distance metric in adversarial attacks in the image do-
main is `p. Unlike image domain where every pixel corresponds to the perturbed
pixel in adversarial attacks, in point clouds adversarial attacks by adding, remov-
ing, or transforming the point cloud destroys the correspondence relationship
to the unperturbed sample. Hence, it becomes infeasible to accurately calculate
the `p metric for the attack. In our paper, we focus on adversarial perturbations,
which preserves the matching between the unperturbed sample and the perturbed
sample. This property of preservation of matching points allows us to measure
the `p norms of the attack exactly, which allow for standard evaluation similar
to the one in the image domain.Here we assume the two point-sets are equal in
size and are aligned , i.e. for xi ∈ X , x′i = xi + δi , i ∈ 1, 2, ..., N

D`p (X ,X ′) =

(∑
i

‖δi‖pp

) 1
p

(1)

For our attacks, we use the `2 and `∞ distances, defined in (2) and (3)
respectively. The `2 distance measures the energy of the perturbation, while `∞
represents the maximum allowed perturbation of each δi ∈∆.
`2 distance,. The `2 measures the energy of the perturbation performed on the
unperturbed point cloud . Its calculation is similar to calculating the Frobenius
norm of the matrix X that represent the point set perturbation variable ∆ such



2 A. Hamdi, S. Rojas, A. Thabet, B. Ghanem

that each row of X is a point δi ∈ ∆. The `2 distance between two point sets
can be measured as follows

D`2 (X ,X ′) =

(∑
i

‖δi‖22

) 1
2

= ‖∆‖F (2)

`∞ distance,. The `∞ represents the max allowed perturbation at any dimension
to every single point δi in the perturbation set ∆ . This distance between two
point sets can be measured as follows :

D`∞ (X ,X ′) = max
i
‖δi‖∞ (3)

1.2 Non-trivial Distances

Other point cloud distances that are commonly used in the literature do not
require the two sets to be in a known correspondence (like the strict `p). These
distance metrics include the following: Chamfer Distances, Hausdorff Distance,
and Earth Mover Distance. In what follows, we formally present each of these
metrics.
Chamfer Distance (CD). This is a common distance to compare 2 point sets.
CD measures the average distance between closest point pairs of 2 different point
clouds. We define CD in Eq (4).

DCD (X ,X ′) = 1

‖X ′‖0

∑
x′
i∈X ′

min
xi∈X

‖xi − x′i‖
2
2 (4)

Hausdorff distance (HD). With HD, we compute the largest distance in the
set of containing x ∈ X and its closest point x′ ∈ X ′. We define HD as follows:

DH (X ,X ′) = max
x′
i∈X ′

min
xi∈X

‖xi − x′i‖
2
2 (5)

Earth Mover Distance (EMD). The EMDmeasures the total effort performed
in the optimal transport scheme that transforms the first point set to the other.
It is defined as follows:

DEMD (X ,X ′) = min
φ:X→X ′

∑
i

‖x′i − φ(xi)‖2, (6)

where φ : X → X ′ is a bijection transform.
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2 Our Full Formulation

The pipeline of AdvPC is illustrated in Fig. 1. It consists of an Auto-Encoder
(AE) G, which is trained to reconstruct 3D point clouds, and a point cloud
classifier F. We seek to find a perturbation variable ∆ added to the input X to
fool F before and after it passes through the AE for reconstruction. The setup
makes the attack less dependent on the victim network and more dependent on
the data (leveraged by the AE). As such, we expect this strategy to generalize to
different networks. Next, we describe the main components of our pipeline: 3D
point cloud input, AE, and point cloud classifier, and then we present our attack
setup and loss.

2.1 AdvPC Attack Pipeline

3D Point Clouds (X ). We define a point cloud X ∈ RN×3, as a set of N 3D
points, where each point xi ∈ R3 is represented by its 3D coordinates (xi, yi, zi).
Point Cloud Networks (F). We focus on 3D point cloud classifiers with a
feature max pooling layer as detailed in Eq (7), where hmlp and hconv are MLP
and Convolutional (1× 1 or edge) layers respectively. This produces a K-class
classifier F.

F(X ) = hmlp(max
xi∈X

{hconv (xi)}) (7)

Here, F : RN×3 → RK produces the logits layer of the classifier with size K. For
our attacks, we take F to be one of the following widely used networks in the
literature: PointNet [8], PointNet++ [9] in single-scale form (SSG) and multi-
scale form (MSG), and DGCNN [11]. Section 7.2 delves deep into the differences
between them in terms of their sensitivities to adversarial perturbations.
Point Cloud Auto-Encoder (G). An AE learns a representation of the data
and acts as an effective defense against adversarial attacks. It ideally projects a
perturbed point cloud onto the natural manifold of inputs. Any AE architecture
in point clouds can be used in our pipeline, but we select the one in [1] because of
its simple structure and effectiveness in recovering from adversarial perturbation.
The AE G consists of an encoding part, gencode : RN×3 −→ Rq (similar to Eq
(7)), and an MLP decoder, gmlp : Rq −→ RN×3, to produce a point cloud. It
can be described formally as: G(.) = gmlp

(
gencode(.)

)
We train the AE with

the Chamfer loss as in [1] on the same data used to train F, such that it can
reliably encode and decode 3D point clouds. We freeze the AE weights during the
optimization of the adversarial perturbation on the input. We show in Section 6
how the AE acts as an effective defense against previous point cloud adversarial
perturbations. Since the AE learns how naturally occurring point clouds look like,
the gradients updating the attack, which is also tasked to fool the reconstructed
sample after the AE, actually become more dependent on the data and less on
the victim network. The enhanced data dependency of our attack results in the
success of our attacks on unseen transfer networks besides the success on the
victim network. As such, the proposed composition allows the crafted attack
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Fig. 1: AdvPC Attack Pipeline: We optimize for the constrained perturbation
variable ∆ to generate the perturbed sample X ′ = X +∆. The perturbed sample fools a
trained classifier F (i.e. F(X ′) is incorrect), and at the same time, if the perturbed sample
is reconstructed by an Auto-Encoder (AE) G, it too fools the classifier (i.e. F(G(X ′))
is incorrect). The AdvPC loss for network F is defined in Eq (16) and has two parts:
network adversarial loss (purple) and data adversarial loss (green). Dotted lines are
gradients flowing to the perturbation variable ∆.

to successfully attack the victim classifier, as well as, fool transfer classifiers
that operate on a similar input data manifold. Furthermore, since many of the
available defenses rely on natural statistics of 3D point clouds [15], we show that
attacking the classifier after AE reconstruction can also lead to perturbations
resilient to these defenses.

2.2 AdvPC Attack Loss

Soft Constraint Loss. In AdvPC attacks, like the ones in Fig. 2, we focus
solely on perturbations of the input. We modify each point xi by a an addictive
perturbation variable δi. Formally, we define the perturbed point set X ′ =
X +∆, where ∆ ∈ RN×3 is the perturbation parameter we are optimizing for.
Consequently, each pair (xi,x′i) are in correspondence. Adversarial attacks are
commonly formulated as in Eq (8), where the goal is to find an input perturbation
∆ that successfully fools F into predicting an incorrect label t′, while keeping
X ′ and X close under distance metric D : RN×3 × RN×3 → R.

min
∆

D (X ,X ′) s.t.
[
argmax

i
F (X ′)i

]
= t′ (8)

The formulation in Eq (8) can describe targeted attacks (if t′ is specified
before the attack) or untargeted attacks (if t′ is any label other than the
true label of X ). We adopt the following choice of t′ for untargeted attacks:
t′ =

[
argmaxi 6=true F (X ′)i

]
.We present the results of both targeted and untar-

geted attacks in this supplementary. As pointed out in [2], it is difficult to directly
solve Eq (8). Instead, previous works like [13,10] have used the well-known C&W
formulation, giving rise to the commonly known soft constraint attack:

min
∆

ft′ (F(X ′)) + λ D (X ,X ′) (9)
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where D (X ,X ′) can be any of the distances proposed in Eq (2,4,6), while
ft′ (F(X ′)) is the targeted adversarial loss function defined on the network F to
move it to target t′ as in Eq (10).

ft′ (F(X ′)) = max

(
max
i 6=t′

(F (X ′)i)− F (X ′)t′ + κ, 0

)
, (10)

where κ is a loss margin. The 3D-Adv attack [13] uses `2 for D (X ,X ′) while
KNN attack [10] uses Chamfer Distance.
Hard Constraint Loss. An alternative to Eq (8) is to put D (X ,X ′) as a
hard constraint, where the objective can be minimized using Projected Gradient
Descent (PGD) [4,5] as follows.

min
∆

ft′ (F(X ′)) s.t. D (X ,X ′) ≤ ε (11)

Using a hard constraint sets a limit to the amount of added perturbation in
the attack. This limit is defined by ε in Eq (11). Having this bound ensures fair
comparisons between different attacks schemes. We can do these comparisons by
measuring the effectiveness of these attacks at different levels of ε. Using PGD,
the above optimization in Eq (11) with `p distance D`p (X ,X ′) can be solved by
iteratively projecting the perturbed sample onto the `p sphere of size εp such
that:

∆t+1 = Πp (∆t − η∇∆t
ft′ (F(X ′)) , εp) (12)

Here, Πp (∆, εp) projects the perturbation ∆ onto the `p sphere of size εp, and η
is a step size. The two most commonly used `p distance metrics in the literature
are `2, which measures the energy of the perturbation, and `∞, which measures
the maximum point perturbation of each δi ∈ ∆. Our experiments use the `2
distance defined as in Eq (2). while the projection of ∆ onto the `2 sphere of
size ε2 is:

Π2 (∆, ε2) =
ε2

max (‖∆‖F , ε2)
∆ (13)

On the other hand, the `∞ projection formulation is as follows:

Π∞ (∆, ε∞) = SATε∞(δi), ∀δi ∈∆, (14)

here SATζ (δi) is the element-wise saturation function that takes every element
of vector δi and limit its range in [−ζ, ζ].
Data Adversarial Loss. The objectives in Eq (8, 11) focus solely on the network
F. We also want to add more focus on the data in crafting our attacks. We do
so by fooling F using both the perturbed input X ′ and the AE reconstruction
G(X ′). Our new objective becomes:

min
∆

D (X ,X ′) s.t. [argmax
i

F (X ′)i] = t′; [argmax
i

F (G(X ′))i] = t′′

(15)
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Here, t′′ is any incorrect label t′′ 6= argmaxiF (X )i and t′ is just like Eq (8).
The second constraint ensures that the prediction of the perturbed sample after
the AE differs from the true label of the unperturbed sample. Similar to Eq (8),
this objective is hard to optimize, so we follow similar steps as in Eq (11) and
optimize the following objective for AdvPC using PGD (using `p as the distance
metric):

min
∆

(1− γ) ft′ (F(X ′)) + γ ft′′ (F (G(X ′))) s.t. D`p (X ,X ′) ≤ εp (16)

Here,f is as in Eq (10), while γ is a hyper-parameter that trades off the attack’s
success before and after the AE . When γ = 0, the formulation in Eq (16) becomes
Eq (11).. We use PGD to solve Eq (16) as follows.

∆t+1 = Πp

(
∆t − η(1− γ)∇∆t

ft′
(
F(X ′)

)
− η γ ∇∆t

ft′′
(
F (G(X ′))

)
, εp

) (17)

Where Πp is the projection to `p as in Eq (13,14)
We follow the same procedure as in [13] when solving the optimization in

Eq (16) by keeping a record of any ∆ that satisfies the constraints in Eq (15)
and by trying different initializations for ∆. If we achieve the constraints in Eq
(15) in one of the optimizations’ initializations, we try smaller hard norms in the
following initialization in order to find a better solution ( smaller norm). The is
the exactly the Binary Search followed by [13] to find the best hyperparameter λ
in Eq (9) that will result in the smallest norm perturbation that succeeds in the
attack on that specific sample.
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3 Qualitative Results

airplane 3 airplane 3 bottle 3 bottle 3 chair 3 chair 3

PN++ (SSG): DGCNN: PN PN++ (MSG): PN: PN:
bookshelf 6 bottle 6 table 6 monitor 6 airplane 6 vase 6

Fig. 2: Examples of AdvPC Targeted Attacks: Adversarial attacks are generated
for victim networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using AdvPC.
The unperturbed point clouds are in black (top) while the perturbed examples are in
blue (bottom). The network predictions are shown under each point cloud. The wrong
prediction of each perturbed point cloud matches the target of the AdvPC attack.
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airplane 3 table 3 bottle 3 sofa 3 vase 3 bottle 3

PN++ (SSG): PN: PN++ (MSG) PN: PN++ (SSG): DGCNN:
sofa 6 stand 6 sofa 6 bench 6 sofa 6 sofa 6

Fig. 3: Examples of AdvPC Untargeted Attacks: Adversarial attacks are gen-
erated for victim networks PointNet, PointNet ++ (MSG/SSG) and DGCNN using
AdvPC. The unperturbed point clouds are in black (top) while the perturbed examples
are in blue (bottom). The network predictions are shown under each point cloud.
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4 Experiments Setup

4.1 Dataset and Networks

We use ModelNet40 [12] to train the classifier network (F) and the AE network
(G), as well as test our attacks. ModelNet40 contains 12,311 CAD models from
40 different classes. CAD models are divided into 9,843 for training and 2,468
for testing. Similar to previous work [15,13,14], we sample 1,024 points from
each object. We train the F victim networks: PointNet[8], PointNet++ in both
Single-Scale (SSG) and Multi-scale (MSG) [9] settings, and DGCNN [11]. For a
fair comparison, we adopt the subset of ModelNet40 detailed in [13] to perform
and evaluate our attacks against their work (we call this the attack set). In the
attack set, 250 examples are chosen from 10 ModelNet40 classes. In untargeted
attacks we only perform the attack once per test sample and report the average
results. However, in targeted attacks (like the ones in Section 8) we evaluate the
attacks on all the possible targets for each sample and report the average results
as followed by c[13].

4.2 Adversarial Attack Methods

We compare AdvPC against the state-of-the-art baselines 3D-Adv [13] and
KNN-Attack [10]. For all attacks, We use Adam optimizer [3] with learning
rate η = 0.01, and perform 2 different initializations for the optimization of
∆ (as followed by [13]). The number of iterations for the attack optimization
for all the networks is 200. We set the loss margin κ = 30 in Eq (10) for both
3D-Adv [13] and AdvPC and κ = 15 for KNN-Attack [10] (as they suggest in
their paper). For other hyperparameters of [13,10], we follow what they report in
their works. We pick γ = 0.25 in Eq (16) for AdvPC because it strikes a balance
between the success of the attack and its transferability (refer to Section 7.1 for
details). In all of the attacks, we follow the same procedure as [13], where the
best attack that satisfies the objective during the optimization is reported. In this
supplementary, we perform both the `∞ and `2 modes of attacks for the baselines
and for AdvPC. For fair comparisons between the attack methods on the same
norm-budgets, we add the following to all the attacks. For `∞ attacks, we add
the hard projection Π∞ (∆, ε∞) (from Eq (14), while for `2 attack, we add the
hard projection Π2 (∆, ε2) (from Eq (13). This insures that all the attacks have
the same norm-budgets ε∞ or ε2 ( depending on the attack mode).

4.3 Transferability

For the constrained `∞ metric, we measure their success rate at different norm-
budgets ε∞ taken to be in the range [0, 0.75], whereas norm-budgets ε2 is taken
in the range [0, 7] . These ranges are chosen because they enables the attacks to
reach 100% success on the victim network, as well as offer an opportunity for
transferability to other networks. We compare AdvPC against the state-of-the-art
baselines [13,10] under these norm-budgets (e.g. see Fig. 5,4). The exact norms
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used for ε∞ and ε2 are {0.01, 0.04, 0.05, 0.1, 0.18, 0.28, 0.35, 0.45, 0.6, 0.75} and
{0.1, 0.22, 0.48, 0.72, 1.0, 1.5, 1.8, 2.8, 4.0, 7.0} respectively. At exactly ε∞ = ε2 = 0,
we get the classification accuracies on unperturbed samples for networks PN,
PN++(MSG), PN++(SSG) and DGCNN to be .92.8%, 91.5%, 91.5%, and 93.7%
respectively. To measure the success of the attack, we measure the percentage of
samples out of all attacked samples that the victim network misclassified. We
also measure transferability from each victim network to the transfer networks.
For each pair of networks, we optimize the attack on one network (victim) and
measure the success rate of this optimized attack when applied as input to the
other network (transfer). We report these success rates for all network pairs. No
defenses are used in the transferability experiment. All the attacks performed in
this section are untargeted attacks (following the convention for transferability
experiments [13]). The results are reported in Sections 5.1,5.2, and 5.3

4.4 Attacking the Defenses

We also analyze the success of our attacks against point cloud defenses. We
compare AdvPC attacks and the baselines [13,10] against several defenses used
in the point cloud literature: SOR, SRS, DUP-Net [15], and Adversarial Training
[13]. We also add a newly trained AE (different from the one used in the AdvPC
attack) to this list of defenses. For SRS, we use a drop rate of 10%, while in SOR,
we use the same parameters proposed in [15]. We train DUP-Net on ModelNet40
with an up-sampling rate of 2. For Adversarial Training, all four networks are
trained using a mix of the training data of ModelNet40 and adversarial attacks
generated by [13]. We always report the success rate as 1-accuracy of the victim
networks on the perturbed data for that specific norm-budget. The results for
untargeted attacks (`∞ and `2) are reported in Section 6, while for targeted
attacks, the defense results (`∞ and `2) are reported in Section 8.



AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds 11

5 Full Transferability Results

5.1 Transferability on Specific Norms

- - ε∞ = 0.18 ε∞ = 0.45

Victim
Network

Attack PN
PN++
(MSG)

PN++

(SSG)
DGCNN PN

PN++
(MSG)

PN++
(SSG)

DGCNN

PN
3D-Adv [13] 100 8.4 10.4 6.8 100 8.8 9.6 8.0
KNN [10] 100 9.6 10.8 6.0 100 9.6 8.4 6.4

AdvPC (Ours) 98.8 20.4 27.6 22.4 98.8 18.0 26.8 20.4

PN++
(MSG)

3D-Adv [13] 6.8 100 28.4 11.2 7.2 100 29.2 11.2
KNN [10] 6.4 100 22.0 8.8 6.4 100 23.2 7.6

AdvPC (Ours)13.2 97.2 54.8 39.6 18.4 98.0 58.0 39.2

PN++
(SSG)

3D-Adv [13] 7.6 9.6 100 6.0 7.2 10.4 100 7.2
KNN [10] 6.4 9.2 100 6.4 6.8 7.6 100 6.0

AdvPC (Ours)12.0 27.2 99.2 22.8 14.0 30.8 99.2 27.6

DGCNN
3D-Adv [13] 9.2 11.2 31.2 100 9.6 12.8 30.4 100
KNN [10] 7.2 9.6 14.0 99.6 6.8 10.0 11.2 99.6

AdvPC (Ours)19.6 46.0 64.4 94.8 32.8 48.8 64.4 97.2

Table 1: Transferability of Attacks under `∞ Norms: We use norm-budgets (max
`∞ norm allowed in the perturbation) of ε∞ = 0.18 and ε∞ = 0.45 . All the reported
results are the untargeted Attack Success Rate (higher numbers are better attacks).
Bold numbers indicate the most transferable attacks. Our attack consistently achieves
better transferability than the other attacks for all networks, especially on DGCNN
[11]. For reference, the classification accuracies on unperturbed samples for networks
PN, PN++(MSG), PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%,
respectively.
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- - ε2 = 1.8 ε2 = 4.0

Victim
Network

Attack PN
PN++
(MSG)

PN++

(SSG)
DGCNN PN

PN++
(MSG)

PN++
(SSG)

DGCNN

PN
3D-Adv [13] 100 8.4 8.8 7.2 100 7.6 9.6 6.0
KNN [10] 100 9.2 8.4 7.2 100 8.8 8.8 7.6

AdvPC (Ours) 98.0 17.2 28.0 22.0 98.8 16.0 19.6 15.6

PN++
(MSG)

3D-Adv [13] 6.8 100 32.4 14.8 7.6 100 28.0 14.0
KNN [10] 7.2 100 22.8 8.4 6.8 100 22.8 8.4

AdvPC (Ours)13.2 94.8 53.2 33.2 22.8 98.4 55.2 44.0

PN++
(SSG)

3D-Adv [13] 6.8 8.8 100 8.0 7.2 10.4 100 7.2
KNN [10] 6.8 8.8 100 7.6 6.4 8.4 100 6.4

AdvPC (Ours)10.8 27.6 96.4 26.8 10.0 25.6 98.8 23.6

DGCNN
3D-Adv [13] 10.8 14.4 39.6 100 10.8 14.0 32.4 100
KNN [10] 7.2 11.2 13.6 100 6.8 8.4 11.2 99.6

AdvPC (Ours)20.8 32.4 52.4 85.2 38.8 48.4 63.2 98.8

Table 2: Transferability of Attacks under `2 Norms: We use norm-budgets (max
`2 norm allowed in the perturbation) of ε2 = 1.8 and ε2 = 4.0 . All the reported
results are the untargeted Attack Success Rate (higher numbers are better attacks).
Bold numbers indicate the most transferable attacks. Our attack consistently achieves
better transferability than the other attacks for all networks, especially on DGCNN
[11]. For reference, the classification accuracies on unperturbed samples for networks
PN, PN++(MSG), PN++(SSG) and DGCNN are 92.8%, 91.5%, 91.5%, and 93.7%,
respectively.
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5.2 Transferability on Different Norms

victim network transfer network
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Fig. 4: Transferability Across Different ε∞ Norm-Budgets: Here, the attacks
are optimized using different ε∞ norm-budgets. We report the attack success on all
victim networks and the success of these attacks on each transfer network. We note
that our AdvPC transfers better to the other networks across different ε∞ as compared
to the baselines 3D-adv[13] and KNN attack [10].
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Fig. 5: Transferability Across Different ε2 Norm-Budgets: Here, the attacks are
optimized using different ε2 norm-budgets. We report the attack success on all victim
networks and the success of these attacks on each transfer network. We note that our
AdvPC transfers better to the other networks across different ε2 as compared to the
baselines 3D-adv[13] and KNN attack [10].
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5.3 Transferability Matrices
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Fig. 6: Transferability Matrix for `∞: Visualizing the overall transferability for 3D-
adv [13] (left), KNN attack [10](middle), and our AdvPC (right). Elements in the same
row correspond to the same victim network used in the attack, while those in the same
column correspond to the network that the attack is transferred to. Each matrix element
measures the average success rate over the range of ε∞ for the transfer network. We
expect the diagonal elements of each transferability matrix (average success rate on the
victim network) to have high values, since each attack is optimized on the same network
it is transferred to. More importantly, brighter off-diagonal matrix elements indicate
better transferability. We observe that our proposed AdvPC attack is more transferable
than the other attacks and that DGCNN is a more transferable victim network than the
other point cloud networks. The transferability score under each matrix is the average
of the off-diagonal matrix values, which scores overall transferability for an attack.
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Fig. 7: Transferability Matrix for `2: Visualizing the overall transferability for 3D-
adv [13] (left), KNN attack [10](middle), and our AdvPC (right). Elements in the same
row correspond to the same victim network used in the attack, while those in the same
column correspond to the network that the attack is transferred to. Each matrix element
measures the average success rate over the range of ε2 for the transfer network. We
expect the diagonal elements of each transferability matrix (average success rate on the
victim network) to have high values, since each attack is optimized on the same network
it is transferred to. More importantly, brighter off-diagonal matrix elements indicate
better transferability. We observe that our proposed AdvPC attack is more transferable
than the other attacks and that DGCNN is a more transferable victim network than the
other point cloud networks. The transferability score under each matrix is the average
of the off-diagonal matrix values, which scores overall transferability for an attack.
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6 Defenses Results (Untargeted Attacks)

6.1 `∞ Defense Results

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 99.6 94.8 100 99.6 97.2
AE (newly trained) 9.2 10.0 17.2 12.0 10.0 21.2
Adv Training [13] 7.2 7.6 39.6 8.8 7.2 42.4

SOR [15] 18.8 17.2 36.8 19.2 19.2 32.0
DUP Net [15] 28 28.8 43.6 28 31.2 37.2

SRS [15] 43.2 29.2 80.0 47.6 31.2 85.6

Table 3: Attacking Point Cloud Defenses (`∞ Untargeted DGCNN): We eval-
uate untargeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with DGCNN
[11] as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [13,10] for all defenses. Note that both the attacks and
evaluations are performed on DGCNN, which has an accuracy of 93.7% without input
perturbations (for reference).

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 99.2 100 100 99.2
AE (newly trained) 14.8 13.6 17.6 12.0 13.2 19.6
Adv Training [13] 12.0 7.6 76.4 11.2 10.8 76.4

SOR [15] 20.4 18.4 51.2 18.8 16.0 51.2
DUP Net [15] 18.0 16.4 33.6 16.8 18.4 38.8

SRS [15] 53.2 40.8 90.4 49.2 42.4 89.6

Table 4: Attacking Point Cloud Defenses (`∞ Untargeted PointNet++ SSG):
We evaluate untargeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with
PointNet++ SSG [9] as the victim network under different defenses for 3D point clouds.
Similar to before, we report attack success rates (higher indicates better attack).
AdvPC consistently outperforms the other attacks [13,10] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ SSG, which has an
accuracy of 91.5% without input perturbations (for reference).
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ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 97.2 100 100 98.0
AE (newly trained) 13.2 10.0 20.0 12.4 12.0 18.4
Adv Training [13] 6.8 26.0 36.4 8.0 31.2 32.8

SOR [15] 21.6 26.0 53.2 24.4 34.0 42.4
DUP Net [15] 29.6 27.6 43.2 24.8 30.8 42.0

SRS [15] 43.6 45.6 80.4 41.2 50.0 78.8

Table 5: Attacking Point Cloud Defenses (`∞ Untargeted PointNet++
MSG):We evaluate untargeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45
with PointNet++ MSG [9] as the victim network under different defenses for 3D point
clouds. Similar to before, we report attack success rates (higher indicates better attack).
AdvPC consistently outperforms the other attacks [13,10] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ MSG, which has an
accuracy of 91.5% without input perturbations (for reference).

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 98.8 100 100 98.8
AE (newly trained) 8.0 7.6 11.6 8.0 7.6 12.4
Adv Training [13] 8.0 8.4 41.6 8.4 9.2 44.8

SOR [15] 16.0 15.6 29.2 16.8 15.2 28.4
DUP Net [15] 10.0 10.4 12.4 11.2 8.4 11.2

SRS [15] 80.8 81.6 97.6 85.6 77.6 97.2

Table 6: Attacking Point Cloud Defenses (`∞ Untargeted PointNet): We
evaluate untargeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with
PointNet [8] as the victim network under different defenses for 3D point clouds. Similar
to before, we report attack success rates (higher indicates better attack). AdvPC
consistently outperforms the other attacks [13,10] for all defenses. Note that both the
attacks and evaluations are performed on PointNet, which has an accuracy of 92.8%
without input perturbations (for reference).
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6.2 `2 Defense Results

ε2 = 1.8 ε2 = 4.0

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 85.2 100 99.6 98.8
AE (newly trained) 9.6 9.6 11.6 10.8 10.0 21.6
Adv Training [13] 16.8 37.6 48.0 8.0 13.2 40.8

SOR [15] 22.0 29.2 36.8 18.0 20.4 27.2
DUP Net [15] 34.8 36.0 36.8 28.8 28.4 31.2

SRS [15] 63.6 61.6 76.0 50.8 34.0 88.4

Table 7: Attacking Point Cloud Defenses (`2 Untargeted DGCNN): We eval-
uate untargeted attacks using norm-budgets of ε2 = 1.8 and ε2 = 4.0 with DGCNN [11]
as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [13,10] for all defenses. Note that both the attacks and
evaluations are performed on DGCNN, which has an accuracy of 93.7% without input
perturbations (for reference).

ε2 = 1.8 ε2 = 4.0

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 96.4 100 100 98.8
AE (newly trained) 13.2 14.0 18.0 13.6 14.0 17.6
Adv Training [13] 20.8 19.2 74.4 10.8 11.6 71.2

SOR [15] 24.8 17.2 49.6 17.6 14.4 48.4
DUP Net [15] 18.4 15.2 33.6 18.0 16.0 32.8

SRS [15] 60.4 55.2 86.4 50.8 42.4 89.2

Table 8: Attacking Point Cloud Defenses (`2 Untargeted PointNet++ SSG):
We evaluate untargeted attacks using norm-budgets of ε2 = 1.8 and ε2 = 4.0 with
PointNet++ SSG [9] as the victim network under different defenses for 3D point clouds.
Similar to before, we report attack success rates (higher indicates better attack).
AdvPC consistently outperforms the other attacks [13,10] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ SSG, which has an
accuracy of 91.5% without input perturbations (for reference).
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ε2 = 1.8 ε2 = 4.0

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 94.8 100 100 98.4
AE (newly trained) 13.2 11.2 18.4 14.8 9.6 20.0
Adv Training [13] 18.8 46.0 48.4 8.0 34.4 36.8

SOR [15] 32.8 37.2 49.2 19.2 37.2 47.2
DUP Net [15] 31.6 33.6 42.8 26.8 32.8 40.4

SRS [15] 63.6 64.8 83.6 44.8 49.6 80.0

Table 9: Attacking Point Cloud Defenses (`2 Untargeted PointNet++ MSG):
We evaluate untargeted attacks using norm-budgets of ε2 = 1.8 and ε2 = 4.0 with
PointNet++ MSG [9] as the victim network under different defenses for 3D point clouds.
Similar to before, we report attack success rates (higher indicates better attack).
AdvPC consistently outperforms the other attacks [13,10] for all defenses. Note that
both the attacks and evaluations are performed on PointNet++ MSG, which has an
accuracy of 91.5% without input perturbations (for reference).

ε2 = 1.8 ε2 = 4.0

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 98.0 100 100 98.8
AE (newly trained) 7.6 7.6 13.2 8.0 7.6 12.8
Adv Training [13] 9.2 10.0 43.6 8.8 8.4 44.0

SOR [15] 20.0 14.4 27.6 16.4 15.2 25.6
DUP Net [15] 12.0 9.2 15.6 10.4 9.2 11.6

SRS [15] 88.8 84.0 96.4 86.8 84.4 98.4

Table 10: Attacking Point Cloud Defenses (`2 Untargeted PointNet): We
evaluate untargeted attacks using norm-budgets of ε2 = 1.8 and ε2 = 4.0 with PointNet
[8] as the victim network under different defenses for 3D point clouds. Similar to before,
we report attack success rates (higher indicates better attack). AdvPC consistently
outperforms the other attacks [13,10] for all defenses. Note that both the attacks and
evaluations are performed on PointNet, which has an accuracy of 92.8% without input
perturbations (for reference).
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7 Analysis of the results

We perform several analytical experiments to explore further the results obtained
in so far. We perform several analytical experiments to further explore the results
obtained in Sections 5.1,5.2,5.3 and 6. We first study the effect of different factors
that play a role in the transferability of our attacks. We also show some interesting
insights related to the sensitivity of point cloud networks and the effect of the
AE on the attacks.

7.1 Ablation Study (hyperparameter γ)

Here, we study the effect of γ used in Eq (16) on the performance of our attacks.
While varying γ between 0 and 1, we record the attack success rate on the
victim network and report the transferability to all of the other three transfer
networks (average success rate on the transfer networks). We present our results
(averaged over all ε∞ norm-budgets) in Fig. 8 and in Fig. 9 (averaged over all ε2
norm-budgets) for the four victim networks. One observation is that, while adding
the AE loss with γ > 0 indeed improves transferability, it tends to deteriorate
the success rate. We pick γ = 0.25 in our experiments to balance success and
transferability.
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Fig. 8: Ablation Study in `∞: Studying the effect of changing AdvPC hyperparameter
(γ) on the success rate of the attack (left) and on its transferability (right). The
transferability score reported for each victim network is the average success rate on
the transfer networks averaged across all different norm-budgets ε∞. We note that
as γ increases, the success rate of the attack on the victim network drops, and the
transferability varies with γ. We pick γ = 0.25 in all of our experiments.

7.2 Network Sensitivity to Point Cloud Attacks
Fig. 10 and Fig. 11 plot the sensitivity of the various networks when they are
subject to input perturbations of varying norm-budgets ε∞ and ε2 respectively.
We measure the classification accuracy of each network under our AdvPC attack
(γ = 0.25), 3D-Adv [13], and KNN attack [10]. We observe that DGCNN [11]
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Fig. 9: Ablation Study in `2: Studying the effect of changing AdvPC hyperparameter
(γ) on the success rate of the attack (left) and on its transferability (right). The
transferability score reported for each victim network is the average success rate on
the transfer networks averaged across all different norm-budgets ε2. We note that
as γ increases, the success rate of the attack on the victim network drops, and the
transferability varies with γ. We pick γ = 0.25 in all of our experiments.

tends to be the most robust to adversarial perturbations in general. This might
be explained by the fact that the convolution neighborhoods in DGCNN are
dynamically updated across layers and iterations. This dynamic behavior in
network structure may hinder the effect of the attack because gradient directions
can change significantly from one iteration to another. This leads to failing attacks
and higher robustness for DGCNN [11].
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Fig. 10: Sensitivity of Architectures in `∞: We evaluate the sensitivity of each of
the four networks for increasing norm-budget. For each network, we plot the classifica-
tion accuracy under 3D-Adv perturbation [13] (left), KNN attack [10] (middle), and
our AdvPC attack (right). Overall, DGCNN [11] is affected the least by adversarial
perturbation.

7.3 Effect of the Auto-Encoder (AE)

In Fig. 12, we show an example of how AE reconstruction preserves the details of
the unperturbed point cloud and does not change the classifier prediction. When
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Fig. 11: Sensitivity of Architectures in `2: We evaluate the sensitivity of each of
the four networks for increasing norm-budget. For each network, we plot the classifica-
tion accuracy under 3D-Adv perturbation [13] (left), KNN attack [10] (middle), and
our AdvPC attack (right). Overall, DGCNN [11] is affected the least by adversarial
perturbation.

a perturbed point cloud passes through the AE, it recovers a natural-looking
shape. The AE’s ability to reconstruct natural-looking 3D point clouds from
various perturbed inputs might explain why it is a strong defense against attacks
in Section 6. Another observation from Fig. 12 is that when we fix the target t′
and do not enforce a specific incorrect target t′′ (i.e. untargeted attack setting)
for the data adversarial loss on the reconstructed point cloud in the AdvPC attack
(Eq (16)), the optimization mechanism tends to pick t′′ to be a similar class to
the correct one. For example, a Toilet point cloud perturbed by AdvPC can be
transformed into a Chair (similar in appearance to a toilet), if reconstructed by
the AE. This effect is not observed for the other attacks [13,10], which do not
consider the data distribution and optimize solely for the network.

unperturbed
point cloud 3D-adv [13] KNN [10] AdvPC (ours)

before AE after AE before AE after AE before AE after AE before AE after AE

PN: PN: PN: PN: PN: PN: PN: PN:
Toilet 3 Toilet 3 Bed 6 Toilet 3 Bed 6 Toilet 3 Bed 6 Chair 6

Fig. 12: Effect of the Auto-Encoder (AE): The AE does not affect the unperturbed
point cloud (classified correctly by PN before and after AE). The AE cleans the perturbed
point cloud by 3D-Adv and KNN [13,10], which allows PN to predict the correct class
label. However, our AdvPC attack can fool PN before and after AE reconstruction.
Perturbed samples by AdvPC, if passed through the AE, transform into similar looking
objects but from different classes (Chair looks similar to Toilet).
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7.4 Ablation Study on the Losses

We ablate each component of our pipeline and show their effect in our attacks. We
evaluate this components by looking Attack Success Rate (ASR), transferability,
and the final norm obtained under the attack. In theses experiments, we allow
unconstrained attacks as well as constrained attacks. We show the effect of
optimizing using EMD, CD, `2, and `∞. We show the results on Tables 11,12,13,14
for all the four networks. We observe transferability is better when using hard
constraints. Constraining the attack norm allows the optimization to learn more
from the AE data distribution. The EMD doesn’t work well while the Chamfer
loss is comparable to the `2 loss.

Attack Setup Results
soft CD soft EMD soft `2 hard `∞ hard `2 AE CD EMD `∞ `2 ASR TR

X - - - - - 0.15 4.25 0.12 0.31 100 9.02
X - - - - X 0.19 5.01 0.13 0.36 99.69 9.51
- X - - - - 0.17 2.83 0.23 0.39 68.36 9.01
- X - - - X 0.16 2.53 0.25 0.37 18.04 7.35
- - X - - - 0.16 4.38 0.11 0.31 100 8.92
- - X - - X 0.21 5.22 0.13 0.36 100 9.35
- - - X - - 0.49 12.37 0.04 0.55 100 9.16
- - - X - X 0.73 13.66 0.07 0.72 96.93 13.14
- - - - X - 0.26 7.41 0.09 0.38 100 8.87
- - - - X X 0.37 7.35 0.16 0.48 99.87 11.08

Table 11: Soft vs Hard on PointNet: study the effect of every bit of the loss on
the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in PointNet [8].(ε∞ = 0.1 , ε2 = 1.8),λ = 1,γ = 0.5. Please
refer to Section 2 for details. Bold numbers are the best.
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Attack Setup Results
soft CD soft EMD soft `2 hard `∞ hard `2 AE CD EMD `∞ `2 ASR TR

X - - - - - 1.01 25.80 0.19 1.00 99.78 11.57
X - - - - X 0.88 26.25 0.21 1.15 95.69 12.19
- X - - - - 0.21 5.04 0.23 0.56 14.58 6.83
- X - - - X 0.07 2.23 0.12 0.20 2.31 6.61
- - X - - - 1.35 26.58 0.20 0.96 99.96 13.38
- - X - - X 1.43 26.42 0.22 0.98 100 16.61
- - - X - - 3.71 53.83 0.06 1.84 94.71 18.46
- - - X - X 2.53 38.78 0.10 1.45 97.64 25.82
- - - - X - 0.59 15.95 0.10 0.58 100 8.84
- - - - X X 0.93 20.08 0.15 0.75 99.20 11.91

Table 12: Soft vs Hard on PointNet++ MSG: study the effect of every bit of
the loss on the norms , Attack Success Rate (ASR) and Transferability (TR) under
unconstrained setup vs constrained setup in PointNet++ MSG [9]. (ε∞ = 0.18 ,
ε2 = 1.8),λ = 1,γ = 0.5. Please refer to Section 2 for details. Bold numbers are the
best.

Attack Setup Results
soft CD soft EMD soft `2 hard `∞ hard `2 AE CD EMD `∞ `2 ASR TR

X - - - - - 0.25 9.39 0.07 0.37 100 7.01
X - - - - X 0.25 9.38 0.08 0.39 99.51 7.17
- X - - - - 0.08 3.71 0.09 0.28 37.20 6.74
- X - - - X 0.07 2.95 0.10 0.24 4.84 6.52
- - X - - - 0.30 9.90 0.07 0.39 100 6.92
- - X - - X 0.28 9.63 0.07 0.38 100 7.56
- - - X - - 1.20 24.52 0.02 0.83 96.80 7.84
- - - X - X 0.80 17.24 0.05 0.70 100 7.72
- - - - X - 0.19 8.08 0.04 0.30 100 6.99
- - - - X X 0.46 12.42 0.09 0.50 100 7.44

Table 13: Soft vs Hard on PointNet++ SSG: study the effect of every bit of the loss
on the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in PointNet++ SSG [9].(ε∞ = 0.1 , ε2 = 1.8),λ = 1,γ = 0.5.
Please refer to Section 2 for details. Bold numbers are the best.
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Attack Setup Results
soft CD soft EMD soft `2 hard `∞ hard `2 AE CD EMD `∞ `2 ASR TR

X - - - - - 1.06 32.22 0.20 1.55 67.91 10.46
X - - - - X 0.71 25.03 0.17 1.18 41.07 9.21
- X - - - - 0.03 2.47 0.07 0.14 2.07 7.18
- X - - - X 0.01 1.62 0.01 0.05 0.76 7.21
- - X - - - 2.81 39.95 0.28 1.53 99.20 23.23
- - X - - X 2.89 40.55 0.31 1.58 96.89 29.91
- - - X - - 4.39 53.49 0.12 2.12 86.67 26.22
- - - X - X 5.10 58.24 0.16 2.40 83.56 35.59
- - - - X - 2.46 39.85 0.23 1.45 99.82 23.45
- - - - X X 2.82 43.19 0.30 1.63 98.80 33.26

Table 14: Soft vs Hard on DGCNN: study the effect of every bit of the loss on
the norms , Attack Success Rate (ASR) and Transferability (TR) under unconstrained
setup vs constrained setup in DGCNN [11]. (ε∞ = 0.18 , ε2 = 2.8),λ = 1,γ = 0.5. Please
refer to Section 2 for details. Bold numbers are the best.
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8 Defenses Results (Targeted Attacks)

We note from targeted attack results in Tables 15,16,17,18 that our AdvPC still
outperforms the other baselines in most defenses but fail in some defenses. This
can be explained because the targeted attacks with specific target label t′ in
Eq (15) is too strict given that the reconstruction of the AE needs to fool the
classifier to unspecified label t′′ that might be different from t′. This restriction
makes the optimization in Eq (16) very difficult to optimize and hence leads to
less successful attacks.

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 77.1 77.6 66.4 85.4 80.1 77.7
AE (newly trained) 13.1 9.8 16.5 13.9 9.8 18.0
Adv Training [13] 5.1 2.5 6.2 5.2 2.2 5.3

SOR [15] 24.1 25.6 21.9 21.2 26.8 19.2
DUP Net [15] 32.0 30.3 27.2 30.3 36.5 26.7

SRS [15] 34.8 36.2 36.2 31.8 38.7 30.4

Table 15: Attacking Point Cloud Defenses (`∞ Targeted DGCNN): We evalu-
ate targeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with DGCNN [11]
as the victim network under different defenses for 3D point clouds. Similar to before, we
report 1 - accuracy (higher indicates better attack). AdvPC consistently outperforms
the other attacks [13,10] for all defenses. Note that both the attacks and evaluations are
performed on DGCNN, which has an accuracy of 93.7% without input perturbations
(for reference).

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 99.5 100 98.3 99.8 100 98.5
AE (newly trained) 13.0 12.9 15.5 12.6 12.8 14.7
Adv Training [13] 9.3 10.3 25.2 5.3 10.7 14.6

SOR [15] 16.9 16.6 18.0 13.5 20.4 15.2
DUP Net [15] 17.3 17.4 18.5 15.8 18.7 16.9

SRS [15] 17.3 17.4 60.8 35.4 51.4 53.0

Table 16: Attacking Point Cloud Defenses (`∞ Targeted PointNet++ SSG):
We evaluate targeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with
PointNet++ SSG [9] as the victim network under different defenses for 3D point clouds.
Similar to before, we report 1 - accuracy (higher indicates better attack). AdvPC
consistently outperforms the other attacks [13,10] for all defenses. Note that both the
attacks and evaluations are performed on PointNet++ SSG, which has an accuracy of
91.5% without input perturbations (for reference).
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ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 96.6 99.9 94.7 99.2 99.9 97.6
AE (newly trained) 13.6 12.8 16.7 16.1 12.0 23.2
Adv Training [13] 7.2 3.6 11.8 6.6 3.6 12.7

SOR [15] 32.1 27.1 31.6 23.8 31.3 25.0
DUP Net [15] 36.6 9.6 36.2 27.6 31.3 30.6

SRS [15] 46.1 44.9 57.0 50.3 41.4 60.3

Table 17: Attacking Point Cloud Defenses (`∞ Targeted PointNet++ MSG):
We evaluate targeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with
PointNet++ MSG [9] as the victim network under different defenses for 3D point clouds.
Similar to before, we report 1 - accuracy (higher indicates better attack). AdvPC
consistently outperforms the other attacks [13,10] for all defenses. Note that both the
attacks and evaluations are performed on PointNet++ MSG, which has an accuracy of
91.5% without input perturbations (for reference).

ε∞ = 0.18 ε∞ = 0.45

Defenses 3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

3D-Adv
[13]

KNN
[10]

AdvPC
(ours)

No defense 100 100 97.4 100 100 98.4
AE (newly trained) 9.9 9.4 12.6 8.5 0.0 9.7
Adv Training [13] 12.2 14.6 22.0 11.3 28.0 13.2

SOR [15] 11.2 10.9 10.7 9.6 4.0 8.6
DUP Net [15] 8.5 9.7 7.8 8.0 9.6 7.8

SRS [15] 70.7 63.8 81.4 52.0 52.0 63.7

Table 18: Attacking Point Cloud Defenses (`∞ Targeted PointNet): We evalu-
ate targeted attacks using norm-budgets of ε∞ = 0.18 and ε∞ = 0.45 with PointNet [8]
as the victim network under different defenses for 3D point clouds. Similar to before, we
report 1 - accuracy (higher indicates better attack). AdvPC consistently outperforms
the other attacks [13,10] for all defenses. Note that both the attacks and evaluations are
performed on PointNet, which has an accuracy of 92.8% without input perturbations
(for reference).
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9 Other Tried Approaches (Less Successful)

9.1 Point Cloud GAN:

We try to use the l-GAN and r-GAN from [1] to create more natural attacks
to the input point clouds. We try to leverage the discriminator signal of both
r-GAN and l-GAN to differentiate between the perturbed point clouds and the
original samples. The idea is that if the trained discriminator can distinguish
between the unperturbed and attacked samples, then we add the discriminator
loss as an additional loss to the attack objective in Eq (11) to craft a perturbation
that passes the trained discriminator test of natural input. We train l-GAN and
r-GAN with the same procedure advised by [1] and on the same data as our
AE G. However, as Fig. 13 illustrates, neither l-GAN nor-GAN were able to
distinguish between the unperturbed samples and the perturbed samples using
the attack from [13]. This disappointing result leads us to abandon the approach
in favor of the AE optimization (which works).
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Fig. 13: GAN instead of AE: We tried to use l-GAN and r-GAN from [1] as natural
priors for AdvPC attacks instead of the AE. The discriminators of Both l-GAN and
r-GAN could not discriminate between the original data and the attacks data by
soft `2 loss or Hard `∞. We show the histogram distribution of discriminator scores
of the original data and attacked data using l-GAN discriminator (left) and r-GAN
discriminator (right).

9.2 Learning Approach

Inspired by the success of [6,7] in learning to attack, we tried to learn the AE G
that produces the desired perturbed point cloud X ′ by optimizing the output
of the AE by the soft adversarial loss. To achieve this, the AE should output
points clouds that are close as possible to the input point cloud X ′ (by the
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Chamfer soft loss as in Eq (9)) and also the output of the AE should fool the
classifier F. We note that because of the nature of point cloud, we could not
project the output of the AE back to the original sample with some norm, as
performed by [6], and hence we used the soft Chamfer loss instead. We train the
AE to perform untargeted and targeted attacks on the training set of ModelNet40
[12] and evaluate the adversary G on the test set of ModelNet. We report the
results of targeted and untargeted attacks in Table 19. We note that for the
untargeted attacks that indeed succeed, the final Chamfer Distance is way bigger
than the ones obtained by optimization (see Tables 11). This might be attributed
to the difficulty of learning an attack that works under varying distance penalties,
unlike the [6] where the adversarial objective is hardly conditioned on a constant
distance between the attacked image and the original image.

Loss λCD Learning rate
Untargeted/
Targeted

Training
Epochs

Accuracy
Chamfer
Distance

Relativistic 0 0.0001 Untargeted 15 6.375 2.6161
Relativistic 1 0.0001 Untargeted 15 5.0833 2.4832
Relativistic 3 0.0001 Untargeted 13 9.9167 0.024229
Relativistic 10 0.0001 Untargeted 13 8.9583 0.022948
Relativistic 30 0.0001 Untargeted 13 10.125 0.021558
Relativistic 100 0.0001 Untargeted 13 13.625 0.018275
Relativistic 300 0.0001 Untargeted 16 17.875 0.014084
Relativistic 1000 0.0001 Untargeted 13 38.0417 0.09286
Relativistic 0 0.00005 Untargeted 13 9.7083 0.023431
Relativistic 0 0.0001 Targeted 0 81.5 0.005556
Relativistic 0 0.001 Targeted 19 31.875 0.015868

Table 19: The Learning Approach on PointNet: We tried to learn a network to
attack PointNet [8] (approach similar to [6] but on point clouds). While the approach
mildly succeeds on untargeted attacks, the final average Chamfer distance on the
succeeding attacks are much bigger than those obtained by optimization like in Fig. 11.
This implies that the optimization is actually better on point lcouds.
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