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1 Supplementary material

We provide further material and details that supplement our main paper, notably
by including qualitative results on dynamic videos. We report additional results
as follows:

— Qualitative results on dynamic test videos (section 1.1)

— Quantitative results on dynamic video using the Temporal warping error
(section 1.2)

— Experimental study on real-data training quantity and ratio (section 1.3)

1.1 Qualitative results on Dynamic Test Videos

Our supp. material package includes example video results. Using the DVR test
data [1], we provide sets of example output video files (test-time inferences)
where each video set explores a different ratio of synthetic and real training
data (see section 1.3 for further detail). Within each data ratio sub-directory,
we provide a video per test scene (M0002, M0014, M00015, M0016). Each video
corresponds to a comparison between two models; (1) training using only real
data vs. (2) training using both synthetic and real data.

Large qualitative temporal stability improvements can be observed when the
model is trained with both synthetic and real data vs. training using real data
only. For each video; we note that the the split screen comparative result shows
(1) training a model using only real data and (2) training on both synthetic and
real data on left hand and right hand side of the split screen, respectively.

1.2 Quantitative results on Dynamic Videos

In this section, we provide quantitative results on dynamic videos using our
synthetic data generation approach and compare it to the SID Motion model
for variable amounts of real training data. Temporal warping error provides a
metric for quantifying the temporal stability of dynamic video frames. Lower
error indicates higher temporal stability. Given a pair of video frames V;, V41 at
times ¢t and t+1, the temporal warping error Ey,q,p is defined as in Equation 1:
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Fig. 1: Temporal warping error [2], Eyqarp, averaged over the DVR [1] dynamic
video test set for the SID Motion RAW-to-RGB model. The model is trained on
both increasing fractions of only real data (blue) and the trained on increasing
fractions of real and synthetic data (green).

where V}H is the optical flow warped frame V;, 1, Mg € {0, 1} is a non-occlusion
mask for pixel i, estimated using [3]. For a video consisting of T frames the
average warping error is defined in Equation 2:

T-1
1
Ewarp(v) = ﬂ § Ewarp(v;fz‘/t-l-l)~ (2)
t=1

In Figure 1 we observe that the SID Motion forward RAW-to-RGB model has
lower temporal warping error (improved temporal stability) when trained with a
mixture of real and synthetic data generated by our SIDGAN, as compared to the
same model trained purely with real data. This lends support to our hypothesis;
the addition of synthetic dynamic video data leads to enhanced temporal stability.
Furthermore, as the amount of real training data is reduced, the difference in
temporal stability become both quantitatively larger and visually more obvious
(c.f. accompanying video results). For example, the SID Motion model trained
with 2% real data plus synthetic data has a temporal warping error ~45% lower
than the model trained using only 2% real data (31.2 x 107° vs. 55.9 x 107°
respectively).
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In summary, particularly in cases where real data collection budgets are lim-
ited, it is highly beneficial to augment the training dataset with synthetically
generated dynamic videos for our target task. We provide evidence that this
affords significant improvement for the temporal stability of the RAW-to-RGB
video mapping task.

1.3 Real, Synthetic training data ratio

We investigate the effect of varying the quantity of real training data whilst
also considering a fixed quantity of synthetically generated training data. We
evaluate our performance in comparison with the full (exclusively) real data
test performance (100%) by alternatively using a fraction the real data available
and supplementing this with our synthetically generated data from SIDGAN. In
summary we explore a mixture of real and synthetic training data with various
real data ratios. We randomly re-sample seven subsets of the original training
data (DVR dataset). Subsets comprise of 2%, 5%, 10%, 20%, 40%, 60% and 80%
of the full dataset respectively. Table 1 summarizes the number of training sam-
ples corresponding to each subset.

We adopt the architecture described in [1] (Unet with 16 residual layers) and
compare the performance of our model in two training scenarios. Our baseline
experiment aims to investigate the effect, on model performance, of reducing
available real data (no synthetic data augmentation). The second set of experi-
ments involve training the same model on a collection of 9366 synthetic videos
and then fine-tuning the model using available real data. For fair comparison,
both models are trained using the same hyper-parameters. We perform 14 dif-
ferent training experiments and quantitatively evaluate image quality after 1000
epochs using Peak-noise-to-signal ratio (PSNR) and Structure Similarity (SSIM).

Tables 2 and 3 provide summary statistics for PSNR and SSIM scores derived
from all subsets. The set of models trained using only (fractions of) real data
achieve maximum PSNR and SSSIM scores of 28.17 and 0.81 respectively. Com-
paratively, models trained using both synthetic and real data consistently, for
every subset ratio considered, result in performance boosts; improving the max
PSNR and SSIM scores to 28.44 and 0.83 respectively. We also observe that
the extra data, afforded by training the model using both synthetic and real
videos results lower model performance standard deviation across subset size,
indicating that augmenting with SIDGAN synthetic data can slightly improve
performance stability and predictability.

Figure provides a visualizations of model comparison across all data sub-
set scenarios considering PSNR, SSIM image quality metrics. Firstly, it can
be observed that training with extremely small (< 5%) amounts of real data
significantly reduces performance for both model variants. However, even when
considering these extreme scenarios, using both synthetic and real data results in
significant boosts in relative performance increasing PSNR from 17.70 to 22.32,
from 21.35 to 23.35 and from 24.04 to 25.19 for the cases of 2%, 5% and 10%,
respectively. As the fraction of real data is increased, the gap in performance
between the considered models can be observed to reduce, highlighting that the
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addition of synthetic data is most valuable in scenarios where we are extremely
real-data hungry e.g. when collection of real training samples is expensive or
indeed not possible. Finally, Figures 3, 5 and 4 provide comparison of model
inference examples. Large visual improvements are consistently most evident in
the scenarios where real-data is most scarce.

0.80

0.60

Image quality using a fraction of the real data

I Synthetic & real /‘
- Real //‘
-~
a3
o ~ AW
* 5% 7
@ 10% / A
20% P
40% ~
@ 60% /*/ P
®8 s0% _ o
' 7
7
7
7
7
7
7
*
—
—
~ -
| 3
18 20 22 24 28
PSNR (dB)

Fig. 2: Peak signal-to-noise-ratio (PSNR) versus Structure similarity (SSIM) us-

ing a fraction of the real data

Table 1: Real data ratios and corresponding number of frames for each domain

split real ratio # videos # frames C # frames B
1 2 % 3 332 3

2 5% 6 671 6

3 10 % 13 1443 13

4 20 % 25 2780 25

5 40 % 52 5758 52

6 60 % 78 8611 78

7 80 % 103 11156 103
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Real 2% Real 10% Real 40% Real 80%

9.12 dB 17.56 dB 23.71 dB 26.78 dB
Real 10% + Synth Real 40% + Synth Real 80% + Synth

16.05 dB 23.16 dB 24.67 dB 26.25 dB

Ground Truth

Fig. 3: Visual comparisons of test-frame inference resulting from models trained
using only “Real” (top row) and “Real 4+ Synthetic” (middle row) data subsets

Table 2: Descriptive statistics for PSNR scores across all splits at epoch 1000.
Model Mean Std Min Max 50% 75%

Real 24.530 3.795 17.707 28.173 26.148 27.115
Real + Synth 26.074 2.473 22.338 28.445 26.769 28.163

Table 3: Descriptive statistics for SSIM scores across all splits at epoch 1000.
Model Mean Std Min Max 50% 75%

Real 0.741 0.085 0.599 0.817 0.776 0.807
Real + Synth 0.790 0.043 0.720 0.831 0.804 0.824
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Fig. 4: Visual comparisons of test-frame inference resulting from models trained
using only “Real” (top row) and “Real 4+ Synthetic” (middle row) data subsets
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Fig. 5: Visual comparisons of test-frame inference resulting from models trained
using only “Real” (top row) and “Real 4+ Synthetic” (middle row) data subsets



8 D. Triantafyllidou, S. Moran, et al.

References

1. Chen, C., Chen, Q., Do, M.N., Koltun, V.: Seeing motion in the dark. In: The IEEE
International Conference on Computer Vision (ICCV) (October 2019)

2. Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning
blind video temporal consistency. In: European Conference on Computer Vision
(2018)

3. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: Ger-
man Conference on Pattern Recognition (GCPR) (2016), http://lmb.informatik.uni-
freiburg.de/Publications/2016/BD16



