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S-1 Network Configurations
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Fig. S-1. Illustration of dynamic filter generation network.

Fig. S-1 shows the structure of the proposed dynamic filter generation net-
work, which is used in the frame synthesis block in Fig. 6 in the main paper. We
employ the super-resolution network RDN [34] as the basis of this dynamic filter
generation network. RDN combines residual networks with dense networks to
exploit hierarchical features and achieve efficient training. In the original RDN,
there is an up-sampling layer for super-resolution. However, since an interpo-
lated frame has the same spatial resolution as input frames in this work, we
remove the up-sampling layer. We use 3× 3 convolution in all convolutional lay-
ers. There are three hyper-parameters in the dynamic filter generation network:
the number D of residual dense blocks (RDBs), the number C of convolutional
layers per RDB, and the growth rate G, which is the number of filters at each
convolutional layer in an RDB. In this work, since intermediate candidates are
already motion-compensated, the network requires a relatively small receptive
field. Thus, we set D = 4, C = 6, and G = 16.
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S-2 Ablation Study on Dynamic Filter Generation
Network

In Table 5 in the main paper, we analyze how different input settings affect the
PSNR performances of the dynamic filter generation network. Here, we qualita-
tively compare interpolated frames using the three settings using 5 × 5 kernels
in Table 5, which are denoted by

– DF-None: Only intermediate candidates are used.

– DF-Input: In addition to the above candidates, input frames are used.

– DF-All: In addition to DF-Input, six warped context maps are used.

Fig. S-2 compares interpolated regions, which are challenging due to fast mo-
tion, object deformation, and occlusion. We see that, as more input information
is used, the dynamic filter generation network yields more reliable filters and
leads to more faithful interpolation results.

(a) (b) (c) (d) (e) (f)

Fig. S-2. Comparison of interpolated frames: the ground-truth 1st frame I1 (a), the
ground-truth 3rd frame I3 (b), interpolated 2nd frames I2, which are obtained by
DF-None (c), DF-Inputs (d), and DF-All (e), and the ground-truth 2nd frame (f).
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S-3 Interpolation at Arbitrary Time Instances

(a) PSNR

(b) SSIM

Fig. S-3. Comparisons with state-of-the-art algorithms at different time steps.

Fig. S-3 compares the average PSNR and SSIM performances at each time
step on the Adobe240-fps dataset [29]. Note that ×2, ×4, and ×8 interpolation
results correspond to the results at T = 0.5, T ∈ {0.25, 0.5, 0.75}, and T ∈
{0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875}, respectively. As mentioned in the main
paper, only DAIN [2] and the proposed algorithm can provide interpolation
results at arbitrary time steps. The other conventoinal algorithms perform ×2
interpolation recursively to obtain these results. The proposed algorithm yields
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the best performances at each time step T , except that it yields slightly worse
results than the CyclicGen large model [16] at T = 0.125 and 0.875. Note that
CyclicGen interpolates frames quite well when the sequence does not contain fast
motions. In other words, it yields good results when a frame to be interpolated is
similar to one of the input frames. Therefore, at T = 0.125 and 0.875, CycleGen
yields reliable interpolation results, which are similar to I0 and I1, respectively.

Fig. S-4 compares interpolation error maps. Brighter pixels indicate larger
differences from the ground-truth. In general, the proposed algorithm yields the
least amount of errors.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Step 0.125 0.25 0.375 0.5 0.625 0.75 0.875

Fig. S-4. Comparison of error maps at different time steps: (a) Ground-truth,
(b) ToFlow [32], (c) SepConv-Lf [22], (d) SepConv-L1 [22], (e) CyclicGen [16],
(f) CyclicGen large [16], (g) DAIN [2], and (h) BMBC (Ours).
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Fig. S-5 shows interpolated results at different time steps. The proposed
algorithm generates less distortions than the conventional algorithms especially
on the fast rotating wheel.

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Step 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Fig. S-5. Comparison of interpolation results at different time steps: (a) Ground-
truth, (b) ToFlow [32], (c) SepConv-Lf [22], (d) SepConv-L1 [22], (e) CyclicGen [16],
(f) CyclicGen large [16], (g) DAIN [2], and (h) BMBC (Ours).
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S-4 More Experimental Results

We provide more comparative results on the Middlebury [1], UCF101 [28], and
Vimeo90K [32] datasets.

S-4.1 Middlebury

(a) Blended input (b) SepConv (c) ToFlow (d) SuperSlomo

(e) CtxSyn (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-6. Comparison of interpolated frames on the “Evergreen” sequence: (a) Blended
input, (b) SepConv [22], (c) ToFlow [32], (d) SuperSlomo [14], (e) CtxSyn [20], (f)
MEMC-Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) SepConv (c) ToFlow (d) SuperSlomo

(e) CtxSyn (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-7. Zoomed results of the yellow square region in Fig. S-6.
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(a) Blended input (b) SepConv (c) ToFlow (d) SuperSlomo

(e) CtxSyn (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-8. Comparison of interpolated frames on the “Dumptruck” sequence:
(a) Blended input, (b) SepConv [22], (c) ToFlow [32], (d) SuperSlomo [14], (e) CtxSyn
[20], (f) MEMC-Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) SepConv (c) ToFlow (d) SuperSlomo

(e) CtxSyn (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-9. Zoomed results of the green square region in Fig. S-8. The differences between
algorithms are easily observable within red squares.
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S-4.2 UCF101

(a) GT (b) DVF (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-10. Visual comparison on the UCF101 dataset: (a) Ground-truth, (b) DVF
[17], (c) ToFlow [32], (d) SepConv-L1 [22], (e) CyclicGen [16], (f) MEMC-Net* [3],
(g) DAIN [2], and (h) BMBC (Ours).

(a) GT (b) DVF (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-11. Zoomed results of the green square region in Fig. S-10. The proposed
algorithm produces less distortions than the conventional algorithms around the fast
moving bar in the yellow box.
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(a) GT (b) DVF (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-12. Visual comparison on the UCF101 dataset: (a) Ground-truth, (b) DVF
[17], (c) ToFlow [32], (d) SepConv-L1 [22], (e) CyclicGen [16], (f) MEMC-Net* [3],
(g) DAIN [2], and (h) BMBC (Ours).

(a) GT (b) DVF (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-13. Zoomed results of the green square region in Fig. S-12. The proposed
algorithm faithfully reconstructs details of the tuba in the yellow box.
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S-4.3 Vimeo90K

(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-14. Visual comparison on the Vimeo90K dataset: (a) Blended input,
(b) ground-truth, (c) ToFlow [32], (d) SepConv-Lf [22], (e) CyclicGen [16], (f) MEMC-
Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-15. Zoomed results of the sky blue square region in Fig. S-14.
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(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-16. Visual comparison on the Vimeo90K dataset: (a) Blended input,
(b) ground-truth, (c) ToFlow [32], (d) SepConv-Lf [22], (e) CyclicGen [16], (f) MEMC-
Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-17. Zoomed results of the sky blue square region in Fig. S-16.
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(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-18. Visual comparison on the Vimeo90K dataset: (a) Blended input,
(b) ground-truth, (c) ToFlow [32], (d) SepConv-Lf [22], (e) CyclicGen [16], (f) MEMC-
Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-19. Zoomed results of the sky blue square region in Fig. S-18.
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(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-20. Visual comparison on the Vimeo90K dataset: (a) Blended input,
(b) ground-truth, (c) ToFlow [32], (d) SepConv-Lf [22], (e) CyclicGen [16], (f) MEMC-
Net* [3], (g) DAIN [2], and (h) BMBC (Ours).

(a) Blended input (b) GT (c) ToFlow (d) SepConv

(e) CyclicGen (f) MEMC-Net* (g) DAIN (h) BMBC (Ours)

Fig. S-21. Zoomed results of the sky blue square region in Fig. S-20.


