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1 Datasets

Below we provide more details about the datasets used in our experiments.

Human3.6M. As in [3], we use the skeleton of the subject 1 (S1) of Human3.6M
as standard skeleton to compute the 3D joint coordinates from the joint angle
representation. After removing the global rotation, translation and constant an-
gles or 3D coordinates of each human pose, this leaves us with a 48 dimensional
vector and a 66 dimensional vector for human pose in angle representation and
3D position, respectively. As in [3, 2, 4], the rotation angles are represented as
exponential maps. During training, we set aside subject 11 (S11) as our valida-
tion set to choose the model that achieves the best performance across all future
frames, and the remaining 5 subjects (S1,S6,S7,S8,S9) are used as training set.

AMASS & 3DPW. The human skeleton in AMASS and 3DPW is defined by
a shape vector. In our experiment, we obtain the 3D joint positions by applying
forward kinematic on the skeleton derived from the shape vector of the CMU
dataset. As specified in the main paper, we evaluate the model on BMLrub and
3DPW. Each video sequence is first downsampled to 25 frames per second, and
evaluate on sub-sequences of length M + T that start from every 5th frame of
each video sequence.

2 Implementation Details

We implemented our network in Pytorch [5] and trained it using the ADAM
optimizer [1]. We use a learning rate of 0.0005 with a decay at every epoch so as
to make the learning rate be 0.00005 at the 50th epoch. We train our model for
50 epochs with a batch size of 32 for H3.6M and 128 for AMASS. One forward
and backward pass takes 32ms for H3.6M and 45ms for AMASS on an NVIDIA
Titan V GPU.
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Table 1. Short-term prediction of joint angles on H3.6M. We report the results on 256
sub-sequences per action.

Walking Eating Smoking Discussion
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD-10-25 [3] 0.26 0.47 0.73 0.80 0.21 0.45 0.71 0.82 0.26 0.43 0.74 0.86 0.48 0.67 1.10 1.28
LTD-10-10 [3] 0.25 0.45 0.72 0.78 0.20 0.41 0.70 0.82 0.25 0.41 0.71 0.83 0.47 0.68 1.09 1.25

Ours 0.24 0.43 0.66 0.71 0.20 0.41 0.68 0.80 0.25 0.41 0.71 0.83 0.44 0.68 1.09 1.25
Directions Greeting Phoning Posing Purchases Sitting

milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD-10-25 [3] 0.20 0.41 0.76 0.92 0.52 0.84 1.24 1.41 0.34 0.57 0.96 1.09 0.31 0.60 1.06 1.24 0.47 0.84 1.24 1.33 0.33 0.52 0.92 1.06
LTD-10-10 [3] 0.19 0.39 0.75 0.91 0.53 0.82 1.22 1.39 0 .33 0.54 0.94 1.07 0.30 0.61 1.02 1.20 0.45 0.80 1.22 1.32 0.28 0.56 0.94 1.08

Ours 0.19 0.38 0.74 0.90 0.50 0.79 1.21 1.38 0.32 0.54 0.94 1.07 0.27 0.57 1.00 1.22 0.43 0.79 1.21 1.32 0.27 0.56 0.94 1.06

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400 80 160 320 400

LTD-10-25 [3] 0.44 0.75 1.21 1.40 0.21 0.35 0.62 0.74 0.29 0.49 0.92 1.07 0.44 0.71 1.04 1.14 0.26 0.43 0.67 0.77 0.34 0.57 0.93 1.06
LTD-10-10 [3] 0.43 0.74 1.20 1.38 0.20 0.34 0.61 0.72 0.28 0.47 0.90 1.05 0.43 0.69 1.02 1.13 0.24 0.40 0.63 0.73 0.32 0.55 0.91 1.04

Ours 0.43 0.74 1.20 1.39 0.19 0.34 0.60 0.72 0.27 0.47 0.91 1.07 0.42 0.68 1.01 1.12 0.24 0.39 0.62 0.71 0.31 0.55 0.90 1.04

Table 2. Long-term prediction of joint angles on H3.6M.

Walking Eating Smoking Discussion
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD-10-25 [3] 0.92 0.97 1.03 1.05 0.99 1.16 1.26 1.33 1.07 1.26 1.41 1.55 1.48 1.59 1.68 1.76
LTD-10-10 [3] 0.95 1.03 1.09 1.12 0.98 1.15 1.28 1.36 1.04 1.21 1.36 1.51 1.47 1.59 1.71 1.79

Ours 0.84 0.91 0.99 1.03 0.98 1.14 1.24 1.31 1.04 1.20 1.38 1.50 1.49 1.62 1.72 1.82
Directions Greeting Phoning Posing Purchases Sitting

milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD-10-25 [3] 1.10 1.23 1.35 1.41 1.63 1.81 1.95 2.01 1.29 1.48 1.63 1.74 1.54 1.81 2.10 2.23 1.51 1.66 1.80 1.87 1.34 1.60 1.79 1.87
LTD-10-10 [3] 1.09 1.21 1.34 1.41 1.63 1.82 1.99 2.06 1.29 1.50 1.67 1.78 1.53 1.81 2.12 2.25 1.52 1.68 1.83 1.91 1.34 1.60 1.79 1.89

Ours 1.08 1.22 1.35 1.42 1.62 1.79 1.93 1.99 1.28 1.49 1.65 1.76 1.55 1.80 2.10 2.24 1.47 1.62 1.75 1.82 1.33 1.59 1.79 1.88

Sitting Down Taking Photo Waiting Walking Dog Walking Together Average
milliseconds 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000 560 720 880 1000

LTD-10-25 [3] 1.71 1.95 2.17 2.26 0.94 1.10 1.23 1.34 1.30 1.48 1.63 1.74 1.30 1.45 1.55 1.64 0.91 0.98 1.02 1.06 1.27 1.44 1.57 1.66
LTD-10-10 [3] 1.68 1.91 2.13 2.22 0.93 1.08 1.22 1.34 1.30 1.47 1.63 1.75 1.31 1.48 1.59 1.68 0.89 0.98 1.03 1.08 1.26 1.44 1.59 1.68

Ours 1.68 1.90 2.12 2.22 0.92 1.07 1.21 1.33 1.31 1.49 1.64 1.77 1.30 1.45 1.55 1.63 0.86 0.94 1.00 1.04 1.25 1.42 1.56 1.65

3 Additional Results on H3.6M

3.1 Results on 256 Random Sub-sequences

In Table 1 and 2, we report the Human3.6M results in angle representation for
short-term and long-term prediction, respectively. Here, we average the error
over 256 random sub-sequences per action, which was proven in [6] to be more
stable than averaging over 8 random sub-sequences per action as is commonly
done. Our conclusions remain unchanged: our approach achieves the state-of-
the-art performance for both short-term and long-term prediction on average.

3.2 Generating Long Future for Periodical Motions

For periodical motions, such as “Walking”, our approach can generate very long
futures (up to 16 seconds). As shown in the supplementary video, such future
predictions are hard to distinguish from the ground truth even for humans.

4 Additional Results on AMASS

In Fig. 1, we compare the results of LTD [3] and of our approach on the BMLrub
dataset. Our results better match the ground truth.
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(a) Jogging

(b) Walking

(c) Stretching

Fig. 1. Qualitative comparison on the BMLrub dataset. From top to bottom, we show
the ground-truth motion, the prediction results of LTD [3] and of our approach on 3D
position. The observed poses are shown as blue and red skeletons and the predictions
in green and purple. As highlighted by the red boxes, our predictions better match the
ground truth, in particular for the legs.

5 Motion Attention vs. Frame-wise Attention

To further investigate the influence of motion attention, where the attention
on the history sub-sequences {Xi:i+M+T−1}N−M−T+1

i=1 is a function of the first
M poses of every sub-sequence {Xi:i+M−1}N−M−T+1

i=1 (keys) and the last ob-
served M poses XN−M+1:N (query), we replace the keys and query with the
last frame of each sub-sequence. That is, we use {Xi+M−1}N−M−T+1

i=1 as keys
and XN as query. We refer to the resulting method as Frame-wise Attention. As
shown in Table 3, motion attention outperforms frame-wise attention by a large
margin. As discussed in the main paper, this is due to frame-wise attention not
considering the direction of the motion, leading to ambiguities.

Table 3. Comparison of frame-wise attention and with our motion attention.

milliseconds 80 160 320 400 560 720 880 1000

Frame-wise Attention 24.0 44.5 76.1 88.3 107.5 121.7 131.7 136.7
Motion Attention 10.8 23.9 49.4 60.7 77.3 92.0 104.4 112.4
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