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1 Overview

This supplementary document provides detailed evaluation results that are sup-
plementary to the main paper. We propose a self-supervised Multi-view Geom-
etry Consistency based 3D Face Reconstruction framework (MGCNet), which
helps mitigate the monocular face pose and depth ambiguity. Firstly, we pro-
pose the detailed data pre-process pipeline in Section 2, then we introduce the
quantitative evaluation datasets in Section 3. Secondly, we introduce the mor-
phable model and highlight that our MGCNet is a general framework in Sec-
tion 4. Thirdly, we evaluate the quantitative result by render error between the
input image and rendered image in Section 5.1 and we show the qualitative
ablation study in Section 5.2. Furthermore, we show further comparison with
Tewari19 [13] under geometry, texture and lighting in Section 5.3, then we con-
duct further comparison with some methods on the in the wild images in Section
5.4. Finally, we demonstrate the qualitative comparisons against other methods
on MICC Florence dataset [1] in Section 5.5 and we also demonstrate some re-
sults from AFLW20003D [23] in Section 5.6, which further certify our MGCNet
performs accurate result on face alignment task. Then we show the qualitative
result on BU-3DFE dataset [19,21] in Section 5.7.

2 Data Preprocess

The images are automatically annotated by the 2D landmark detection method
in [3] and the face detection method in [20]. We filter the face pose, face attribu-
tion, low-resolution images, and blurred images and obtain ∼390K face images
from the above four datasets as our training set. The images are scaled to a
resolution of 224 × 224.
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The multi-view images of the training dataset are captured with a consistent
lighting condition across views. Theoretically, the photometric consistency will
be violated if the lighting across views is dramatically different. Our MGCNet
shares the same property with multi-view stereo methods that require overlap
across views, this also the reason that we only use N = 3 views in practice.

3 Quantitative Evaluation Dataset

AFLW20003D is constructed to evaluate face alignment on challenging in the
wild images. This database contains the first 2000 images from AFLW [7] with
landmarks annotations. We use this database to evaluate the performance of our
method on face alignment tasks [23].
MICC Florence is a 3D face dataset that contains 53 faces with their ground
truth High-resolution 3D scans of human faces are acquired from a structured-
light scanning system from each subject with several video sequences of varying
resolution, conditions and zoom level [1].
FRGC v2.0 includes 4007 scans of 466 individuals acquired with the frontal
view from the shoulder level, with very tiny pose variations. About 60% of the
faces have neutral expression, while the others show spontaneous expressions of
disgust, happiness, sadness, and surprise [9]. Scans are given as matrices of 3D
points of size [480, 640], with a binary mask indicating the valid points of the
face (about 40 K on average).
BU-3DFE BU-3DFE database includes 100 subjects with 2500 facial expres-
sion models. The database presently contains 100 subjects (56% female, 44%
male), ranging age from 18 years to 70 years old, with a variety of ethnic/racial
ancestries, including White, Black, East-Asian, Middle-east Asian, Indian, and
Hispanic Latino. Each subject performed seven expressions in front of the 3D
face scanner. With the exception of the neutral expression, each of the six proto-
typic expressions (happiness, disgust, fear, angry, surprise and sadness) includes
four levels of intensity [19,21].

4 3D Morphable Model

Blanz and Vetter [2] introduce the 3D morphable model (3DMM). 3DMM ben-
efits the 3D face reconstruction by constraining the solution space, thereby sim-
plifying the problem. In this paper, our goal is to estimate 3DMM parameters
from a single photograph.

We conduct our experiments with 3DMM model since it is still a general
method that widely used by single-image based latest methods (as in works
of [4, 6, 15, 18, 22, 23]), and we have proved the superiority of our method over
theirs under a fair comparison, as shown qualitatively in the main paper as well
as our quantitative result.

As we have clarified in the main paper, our method is focused on improv-
ing single-view reconstruction quality via multi-view consistency, our proposed
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framework is general and is not limited to any specific face model. We believe
other face models with better representation ability [11, 13, 14, 16, 17] can easily
plug into our proposed MGCNet.
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Fig. 1. Quantitative evaluation of photometric error on the CelebA [8] dataset. The
error map range is [0, 1]

5 Further Evaluation Result

5.1 CelebA Dataset

We evaluate the photometric error of our approach by heat maps on the CelebA
dataset [8] as shown in Figure 1 that these images are only used for testing and
visualization. We achieve low pixel error, which benefits from using multi-view
geometry consistency. This also demonstrates better reconstruction capabilities
of our MGCNet to in-the-wild images.
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5.2 Alation Study

To evaluate the effects of multi-view geometry consistency losses on the quality
of the reconstructed meshes. We conduct ablation studies on the MICC Florence
3D Face dataset [1], as shown in Figure 2. We calculate the point-to-plane root
mean squared error, and normalize the error to a heatmap. This heatmap indi-
cate that the major improvements regions are jaw, nose and cheekbones region
in frontal case, and eye contour, nose, cheekbones regions for the large-pose case.
Face geometry (especially in large pose cases), as well as better 3D pose estima-
tion results, are the major improvements bring by our method, thanks to our
multi-view geometry constraints that explicitly regularizes the geometry across
different views.

       Input                  Baseline                 Ours            Input                  Baseline                 Ours     

Fig. 2. Quantitative evaluation of point-to-plane root mean squared error as the error
map format on the MICC Florence 3D Face dataset [1]. The error map range is [0, 8.29].

5.3 Texture, illumination shadings

We compare our MGCNet with Tewari19 [13] as Figure 3. The result of Tewari19
[13] results of geometry are visually more detail since they use a face represen-
tation more complicated than 3DMM used by our method. However, it is hard
to say Tewari19 [13] has better geometry results since our method does have a
better quantitative result shown in the main paper. The texture model used in
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Tewari19 [13] is also different from 3DMM. Despite that, better geometry gen-
erated by our method leads to better texture via the render loss used, which can
also support the validity of our MGCNet. As our method is focused on improving
the reconstruction quality via multi-view consistency. Our MGCNet is a general
system that is not limited to any specific face model.

5.4 In the wild data

Secondly, we visualize our result under geometry overlay situation compared
with Richardson et al. [10], Sela et al. [12], Tewari17 et al. [15], Tewari19 et
al. [13] and RingNet et al. [11], and we notice that our approach performs better
than methods [10–13,15] as shown in Figure 5.

We also show some detail intermediate result about Figure 5 in the main
paper in Figure 7.

5.5 MICC Florence Dataset

Firstly, we compare our MGCNet with Zhu et al. [23] (3DDFA), Sanyal et al. [11]
(RingNet), Feng et al. [5] (PRN), and Deng et al. [4]. For each sample in MICC
Florence, we pick both front face images and large face pose images as test data.
We show the geometry overlay of the reconstruction result, which we achieve
more accurate results than the most methods, and we get better results than
Deng et al. [4] in the large pose case as Figure 4.

5.6 AFLW20003D Dataset

AFLW20003D is constructed by [23] to evaluate face alignment. Since the images
are captured in the wild and show large variations in pose and appearance, which
is a challenging 3D face alignment dataset. We use this database to evaluate the
performance of our method on face alignment tasks.

As a supplementary to the quantitative evaluation in the main paper, we first
demonstrate some results even better than the ground truth from AFLW20003D
[23] in Figure 6. Besides, we also show our result that performs accurate face
alignment results, where red lines are predicted landmarks by our method, white
lines are ground truth from [23].

Furthermore, we visual our MGCNet result from multiple viewpoints in Fig-
ure 8 on AFLW20003D [23], which shows that we get vivid reconstruction results.

5.7 BU-3DFE Dataset

We present more qualitative reconstruction results of our MGCNet on BU-3DFE
dataset [19,21]. In Figure 9, we show six samples with various expressions, the re-
constructed 3D face showed with face pose, texture, geometry and illumination.
This quantitative evaluation of our geometry reconstruction on the BU-3DFE
dataset [19,21] shows that our MGCNet can even handle different expression sit-
uation. For the prediction of albedo and lighting, while the texture quality would
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be benefited from better geometry implicitly via the render loss, the ambiguity
in illumination and face albedo is an intrinsic issue due to the problems nature,
and our SH lighting is RGB-channel, limit the SH lighting to one channel will
help.
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Fig. 3. Quantitative evaluation compare with Tewari19 [13].
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              Input                           3DDFA                PRN                             Deng             RingNet                           Ours

Fig. 4. Comparison with Zhu et al. [23] (3DDFA), Sanyal et al. [11] (RingNet), Feng
et al. [5] (PRN), and Deng et al. [4].
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   Input        Richardson         Sela   Tewari18     Tewari19  RingNet         Ours     

Fig. 5. Comparison with Richardson et al. [10], Sela et al. [12], Tewari17 et al. [15],
Tewari19 et al. [13] and RingNet et al. [11]. Our MGCNet trained by multi-view consis-
tency loss outperforms these state-of-the-art methods in face reconstruction geometry
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Fig. 6. Examples from AFLW20003D dataset [23] show that our predictions are more
accurate than ground truth in some cases.
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Fig. 7. Face reconstruction results under texture, geometry and illumination of our
method on AFLW20003D [23] and CelebA [8].
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         Input                   Overlay              Illumination     Multiple Poses

Fig. 8. Face reconstruction results of our method on AFLW20003D [23]
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       Input                  Overlay                 Texture          Geometry          Illumination

Fig. 9. Our accurate result in face pose, texture, geometry and illumination on BU-
3DFE dataset [19,21]


