
Object-based Illumination Estimation with
Rendering-aware Neural Networks

Supplementary Material

Xin Wei1,2, Guojun Chen1, Yue Dong1, Stephen Lin1, and Xin Tong1

1 Microsoft Research Asia
2 Zhejiang Univiersity

1 Introduction

This supplementary material includes additional details on training data prepa-
ration (Sec. 2), implementations (Sec. 3) and additional experimental results
(Sec. 4).

2 Training data preparation

The training data is composed of many elements such as reflectance maps and
angular environment lighting which are difficult to collect in large volumes from
real scenes. As a result, we choose to train our neural networks with synthetically
generated data. For better network generality to real-world inputs, this synthetic
data is prepared to better reflect the properties of real scenes.

Objects The objects used in our synthetic dataset are collected from the Adobe
Stock market. We first manually select 80 tables, cabinets, sofas, etc. that of-
ten serve as supporting surfaces for objects, and then select 600 objects that
commonly appear on top of such surfaces. We chose to use Adobe Stock as our
data source since it contains models with realistic textural details and material
variations that better reflect real objects.

Object layouts The layouts for the objects are determined by first selecting a
support surface and then randomly choosing 1 - 6 objects from the set to be put
on top. The objects are placed at random positions and rotations on the surface,
with an upright orientation. We regard all the objects in the object dataset to
be compatible with each support surface, such that their semantic relationships
need not be manually assigned. The upward direction is provided for each object.
If an object has multiple possible upward directions, we include a copy of the
object for each valid upward orientation.

Viewpoints We uniformly sample viewpoints on the upper hemisphere as defined
by the support surface. The θ direction of the view is restricted to the range of
0 − 80 degrees, avoiding glancing views of the support surface which are rarely
seen in AR scenarios.

2 X. Wei et al.

Light sources To represent a natural distribution of real-world environment
lights, we use 1800 real measured environment maps from [1] together with 14K
randomly generated multiple area light sources as our light sources. We also use
the environment maps to construct the backgrounds of the rendered scenes.

Depth maps We approximate the inaccuracy of real-world depth sensors by gen-
erating a lower resolution depth map from the synthetic data and obtaining
rough geometry from it through Poisson surface reconstruction. We manually
choose the depth map resolution and the oct-tree level such that the rough ge-
ometry contains only large-scale geometric features that can be robustly captured
by off-the-shelf depth sensors.

Our synthetic dataset is composed of real environment lighting, physically
based materials, and scene layouts modeled by experienced artists. Images are
rendered with a physically based renderer, where the visibility of the scene for
each environment light pixel is computed by a shadow map. After integrating
contributions of all environment map pixels, our render generates all-frequency
shadow and lighting effects of the scene. Most of our 3D scene only contains a
small surrounding region of the objects and the environment out of this region is
modeled by the environment lighting. We thus ignore the multi-bounce effect in
the local 3D scene due to its expensive computational cost and limited numeric
contribution to the final rendering result.

Rendering We render the synthetic images using a custom-built phyically based
GPU renderer. Although indoor scenes contains strong interreflection effects, our
render only contains a local view of a scene and the interreflection of the sur-
roundings are already included in the environment map, we choose to ignore the
local interreflection effects. This speeds up the synthetic training data generation
process, also allows real-time rendering for AR applications. Figure 1 compares
rendering results with and without the local interreflection effects, since the in-
terreflection of the surroundings are already considered, the rendering results
are similar to each other.

For environment lighting, we perform importance sampling over the environ-
ment light; then for each sampled light direction, we compute visibility using
shadow maps and compute the shading for each pixel via rasterization. To avoid
aliasing, we perform 8 × 8 supersampling for each pixel with all the maps we
rendered. The same rendering system is used to synthesize virtual objects in our
AR application.

When creating the ground truth training data, the diffuse and specular shad-
ing maps are rendered by setting the specular or diffuse coefficient to 0, respec-
tively.

3 Implementation details

Network structures An overview of our network is presented in Figure 8. The de-
tailed structures in the network are subsequently shown: decomposition network

Rendering-aware Illumination Estimation 3

(Figure 9); diffuse shading translation network (Figure 10); specular shading
translation network (Figure 11) and the fusion network (Figure 12).

Pre-training of the diffuse shading translation network For the diffuse shading
translation network, the training is supervised using the ground truth environ-
ment light. Since the 8× 8× 6 angular feature map has strong correlation with
the 8 × 8 × 6 auxiliary irradiance maps, we also use the environment map at
the corresponding cube map resolution to supervise training for those feature
maps. In practice, we use a 1 × 1 convolution to convert those feature maps
into a 8 × 8 × 6 RGB image, where the image should match the ground truth
environment map converted to the same resolution. The training for both the
full resolution and the low resolution cube maps is conducted with the Huber
loss.

Distortion-aware angular domain supervision For convenience in convolution,
we represent the angular domain environment light with the latitude and longi-
tude parametrization. To compensate for distortion, we design distortion-aware
angular supervision. Instead of determining outputs and providing supervision
with only one parameterization, we use latitude and longitude parameterizations
with different rotations: one with the view direction at the center, one with a
180◦ yaw rotation, and the other with a 90◦ pitch rotation. When converting the
feature maps into the latitude and longitude parameterization, we make three
copies of them, each with one of the three parameterizations, and the network
generates outputs for each of them. In computing the loss function, we weight
the loss according to the following equation:

ω(θ, φ) =

{
Ω(θ, φ) −135◦ ≤ φ ≤ 135◦

Ω(θ, φ)(180− |φ|)/45 φ > 135◦ or φ < −135◦
(1)

where Ω(θ, φ) is the solid angle of one pixel with its pixel center at θ, φ. There
exists a solid angle fall-off toward the polar regions (top and bottom boundaries)
of such parameterization, and we added additional fall-offs toward the left and
right boundaries, so that distorted and unstable regions will contribute less to
the loss function. During inference, we also calculate a weighted average over the
three output parameterizations that emphasizes regions with less distortion.

Ideally, the three parameterizations should be processed with three separate
group convolutions having shared convolution weights. For the angular convolu-
tion layers of the spatial-angular translation networks, we employ such separate
group convolutions and shared weights. However, tripling the size of the convolu-
tion layers in the fusion network greatly increases the computation and memory
cost, so we simply concatenate the three parameterizations as a nine-channel
image, while keeping the same number of convolution channels.

Recurrent convolution training When training the recurrent convolution layers
with sequential data and expanding the recurrent layers, in practice, we expand
the recurrent layers to accommodate 10 consecutive frames during training. Due

4 X. Wei et al.

to the size of the remaining (non-recurrent) layers and the size of sequential
data, training the recurrent layers together with all the other layers consumes
more memory and computation. For greater efficiency, we train the recurrent and
non-recurrent layers separately. We first train all the non-recurrent layers with
single-frame data, which allows us to train with a larger batch size containing
more variation. We then initialize the recurrent convolutions with zero weights,
and only train the weights for the recurrent layers, with the non-recurrent layers
fixed.

Latitude and longitude representation The conversion from cube maps to the lat-
itude and longitude representation, as well as the mapping of specular reflections
to the mirror direction, are implemented as custom layers based on the gather
and splat operations, respectively. The rough geometry is directly triangulated
from the depth input, and the irradiance map is rendered using shadow maps.

Training stages The decomposition and the diffuse shading translation are first
trained separately; then the fusion network is trained with input from fixed
diffuse and specular translation networks. We feed the ground truth diffuse and
specular shading maps as input when training the diffuse shading translation
network and the fusion network. Finally, all the components are connected into
a full system and trained end-to-end, while maintaining the supervision for each
of the intermediate outputs.

Rendering error We compute the rendering error as one evaluation metric. For
synthetic input, we re-render the same scene with the estimated light, and com-
pare the rendering results to the input image, which is lit by the ground truth
light. For real measured data, we compose one virtual object into the image us-
ing the estimated light, and compare this with composition using the measured
ground truth light.

Single image input Due to the recurrent nature of our network, to avoid temporal
information affecting the estimation result for single image test cases, we treat
them as static scenes with static lighting, and run 10 identical frames of input
through the recurrent network, taking the final stable output as the final result.

3.1 Evaluation setup

Synthetic generated environment maps To systematically test the robustness of
our system to different lighting environments, we also prepare separate sets of
synthetically generated lighting conditions that provide more continuous cover-
age over the range of lighting environments. For each set of lighting conditions,
we render each scene and each view under those lighting conditions with ten
random rotations. We then plot the average error of our system on the different
lighting conditions in the set. Specifically, the sets of lighting conditions are as
follows: (1) One square-shaped area light source of varying size. The area of the
light source ranges from 0.1 to 3.0 solid angles. (2) Multiple fixed-sized area light

Rendering-aware Illumination Estimation 5

sources, each of 0.3 solid angles. We put multiple area light sources randomly in
the upper hemisphere, and our test set contains cases that range from 1 to 8 area
light sources. Experimental results with those synthetic generated environment
maps are shown in Figures 3 and 4 of the main paper.

Test set with varying object materials The same geometric shape is rendered
with different object materials. We first test materials with different roughness
values, using a homogeneous specular BRDF with [0.5, 0.5, 0.5] diffuse albedo,
[0.5, 0.5, 0.05] specular albedo, and roughness varying from 0.05 to 0.5. We then
fix the roughness to 0.1 (a glossy surface) and vary the diffuse and specular
ratios, producing materials that range from purely diffuse to purely specular. The
results, shown in Figure 3 of the main paper, indicate that lighting estimation
is stable to different object materials.

3.2 Real input capture setup

We captured a set of real images from indoor scenes with the ground truth
environment light using a panoramic camera, to enable numerical analysis. In
practice, we capture the RGBD input with a PointGrey full-HD RGB camera
and a PrimeSense depth sensor. We filled holes in the depth map via a push-pull
operation, and then apply a bilateral filter to remove noise. We use KinectFusion
to find correspondence between frames, so that we can insert a virtual object
and track it between video frames.

4 Results

Here, we include additional results and comparisons.

Synthetic validations Figure 3 exhibits selected results on our synthetic test set.
Figure 4 illustrates results of compositing virtual objects into a real measured
input image. Rendered images with the ground truth environment map are pro-
vided for reference.

Local interreflection Our training and test datasets are rendered with a phys-
ically based renderer using only a single light bounce, the global illumination
effects for the surrounding objects are included in the environment map, the
local interreflection within the local object is ignored. To validate how those
ignored local interreflection affects our result, we prepared input image rendered
with and without local interreflection and test our method on both inputs. As
shown in Figure 1 Since the dominating global illumination effects are already
included in the environment map, the renderings with and without local inter-
reflection are very similar to each other. The similar inputs also leads to similar
prediction results.

We also numerically analyzed the effect of local interreflections, for the syn-
thetic test set rendered with local interreflection, the render and light RMSE

6 X. Wei et al.

are 0.070 and 1.426. Compare to RMSE on test set without local interreflection
0.068 and 1.419, we find a 3% increase of relative error, which can be further
reduced if we also render the training data with GI.

(a)Input with (b)Input without (c) Our result (d) Our result
local interreflection local interreflections taking (a) as input taking (b) as input

R
e
n
d
e
r

L
ig

h
t

Fig. 1. Synthetic data rendered with and without local interreflection produces similar
images, since the environment map already contains interreflection of the surroundings.
Our method produces similar results from both inputs.

Comparisons Figure 2 compares our results with Song et al. [3]. The results of [3]
are extracted from their paper, they also provided the ground truth environment
light. However, the virtual object model and its material is unavailable and
the environment map in their paper has an unknown rotation respect to the
view point, as a result, we prepare the reference environment map and virtual
object insert (with our own virtual object) based on their provided ground truth
environment map instead of compare to the images in their paper.

As shown in Figure 2, environment map estimated by [3] contains rich details,
however the overall distribution of the light is not consistent with the ground
truth (the dominating lights are at different locations). This also leads to larger
rendering error compared to the ground truth. The environment maps estimated
by our method correctly match the distribution of the ground truth and the
rendering results of virtual object insert produce smaller error.

Figures 5 - 6 show a series of comparisons to state-of-the-art lighting estima-
tion methods on real measured input images captured by [2].

Spatially-varying illumination Our object-based lighting estimation can be eas-
ily extended to support spatially-varying illumination effects, such as near-field
illumination, by taking different local regions of the input image. Figure 7 illus-
trates an example scene lit by one near-field area light source. Our method with
different spatial crops from the input image correctly estimates such spatially-
varying illumination effects. The two toy airplanes inserted into the scene cast
shadows towards the correct direction compared to the reference rendered with
ground truth local lighting. Please refer the supplementary video for a dynamic

Rendering-aware Illumination Estimation 7

Reference Predicted Difference map
S
o
n
g

et
a
l.

[3
]

O
u
rs

S
o
n
g

et
a
l.

[3
]

O
u
rs

Fig. 2. Comparison with Song et al. [3]. Although [3] produces environment maps with
rich details, the overall distribution of the light is wrong which produces inconsistent
shading results comparing to the reference. Our method correctly determines the posi-
tion of the light sources, the rendering results with our predicted light has lower error
compared to results of [3].

8 X. Wei et al.

local illumination example, showing temporal coherent estimation of such local
illumination effects.

Rendering-aware Illumination Estimation 9

Reference Our results Reference Our results Reference Our results

Fig. 3. Selection of evaluation results on our synthetic test set, with the rendering
results with ground truth and estimated light shown at the top and the reference
and estimated environment light shown at the bottom. The first column shows results
under environment maps containing a single dominant light ; the second row shows
results under multiple dominant lights; the third row shows results under large area
lights; the forth row shows results under near ambient light.

10 X. Wei et al.

Fig. 4. Real captured examples with comparison to measured ground truth lighting.
We compare the estimated environment map against measured ground truth, as well as
results rendered with our lighting and ground truth lighting. Please refer to the input
RGB image to determine which object is virtually inserted.

Rendering-aware Illumination Estimation 11

(a) Real captured (b) Reference (c) Gardner [1] (d) LeGendre [2] (e) Our result

Fig. 5. We compare our method to existing lighting estimation methods. (a) The pho-
tograph of a real 3D-printed bunny placed in the scene. Rendering results of a virtual
bunny under captured ground truth environment map (b), environment map estimated
by (c) Gardner et al. [1], (d) LeGendre et al. [2] and (e) our method.

12 X. Wei et al.

(a) Real captured (b) Reference (c) Gardner [1] (d) LeGendre [2] (e) Our result

Fig. 6. We compare our method to existing lighting estimation methods. (a) The pho-
tograph of a real 3D-printed bunny placed in the scene. Rendering results of a virtual
bunny under captured ground truth environment map (b), environment map estimated
by (c) Gardner et al. [1], (d) LeGendre et al. [2] and (e) our method.

Rendering-aware Illumination Estimation 13

Fig. 7. Spatially-varying illumination result by estimating light with different spatial
crops from the input image (marked in blue). The virtually inserted toy planes exhibit
shading consistent with the input, as the left plane casts shadow to the left, like the
nearby pen stand, and the right plane casts shadow towards the right, similar to the
nearby mug. Such spatially varying lighting effects are typical of near-field illumination.

Fig. 8. Overview of our lighting estimation networks. The detailed network structures
are illustrated in the following figures.

14 X. Wei et al.

Fig. 9. Detailed network structure of our decomposition network.

Fig. 10. Detailed network structure of our diffuse shading translation network.

Rendering-aware Illumination Estimation 15

Fig. 11. Detailed network structure of our specular shading translation network, and
recurrent convolution block.

Fig. 12. Detailed network structure of our fusion network.

16 X. Wei et al.

References

1. Gardner, M.A., Sunkavalli, K., Yumer, E., Shen, X., Gambaretto, E., Gagné, C.,
Lalonde, J.F.: Learning to predict indoor illumination from a single image. ACM
Transactions on Graphics 36(6), 1–14 (nov 2017)

2. LeGendre, C., Ma, W., Fyffe, G., Flynn, J., Charbonnel, L., Busch, J., Debevec,
P.E.: Deeplight: Learning illumination for unconstrained mobile mixed reality. In:
CVPR (2019)

3. Song, S., Funkhouser, T.: Neural illumination: Lighting prediction for indoor envi-
ronments. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (June 2019)

