
Supplementary Material

1 Overview

This document provides additional technical details and more visualization re-
sults. Specifically, we first describe the details of the network architecture for the
experiments in Sec. 2. Then we discuss the details of the proposed GAN-based
point cloud generation model in Sec. 3. Furthermore, we show more visual and
quantitative results of our method in Sec. 4. Finally, in Sec. 5, we present more
visualization results compared with PointFlow [7].

2 Network Architecture

For the generator, the structure is illustrated in Fig. 2. We generate four reso-
lutions (256, 512, 1024, and 2048) of point clouds from a 128-dimensional latent
vector created by the normal distribution N (0, 0.2). Specifically, we stack 4 de-
convolution networks (DECONV Networks) to generate multi-resolution feature
maps. Each deconvolution network has two branches: one for capturing global
information and one for bilateral interpolation. For bilateral interpolation, the
detailed structure is shown in Fig. 1.The output size of 4 deconvolution networks
are 256×32, 512×64, 1024×128, and 2018×256, respectively. It is important to
note that our four deconvolution networks are not shared for four resolutions. To
generate the coordinates of 3D point clouds, after each deconvolution network,
we use Multi-Layer Perceptrons (MLPs) with neuron sizes of 512, 256, 64, and
3, respectively. After MLPs, we use Tanh as the activation function to generate
the final 3D coordinates.

For the discriminator, in Fig. 3, we adopt four PointNet-like [5] networks as
our discriminators. Specifically, we modify the network to accommodate different
resolutions. In the experiments, we found that too many convolution layers are
harmful for low-resolution point clouds. Besides, for different resolutions, the
discriminators are not shared.

3 Training of the Proposed PDGN

We employ the same training strategy in Goodfellow et al. [2] to train the gen-
erator and discriminator. We alternate between one step for optimizing the dis-
criminator and one step for optimizing the generator to train our method. We
did not use any more tricks in our training. We adopt Adam [3] with the learning
rate 10−4 for both generator and discriminator. In the experiments, we observe
that the proposed model is easy to train and stable during training. This may
be due to the generation strategy, which can progressively generate point cloud-
s from the low resolution to the high resolution. In our progressive generator,
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Fig. 1. Learning-based bilateral interpolation in our experiments.
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Fig. 2. The architecture of our progressive deconvolution generator. G1, G2, G3, and
G4 are four MLPs for 256, 512, 1024, and 2048 resolutions, respectively. FC is the fully
connected layer. k-NN represents the k nearest neighboring points.
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Fig. 3. The architecture of our discriminators. D1, D2, D3, and D4 are discriminators
with resolutions of 256, 512, 1024, and 2048, respectively. FC is the fully connected
layer, while CONV represents 1×1 convolution operating on each point.

the low-resolution network is easier to train due to the simple shape with fewer
points. The stability of the low-resolution network contributes to the training
of the high-resolution network. Furthermore, we also found that our method
convergences quickly during training.

4 More Visualization and Quantitative Results

4.1 Generated multi-resolution point clouds

We visualize more generated point clouds of four resolutions 256, 512, 1024, and
2048, respectively. As shown in Figs. 6, 7, 8, 9, 10, 11, and 12, they contain seven
categories including “Airplane”, “Chair”, “Car”, “Table”, “Lamp”, “Pistol”,
and “Guitar”. From the figure, it can be clearly seen that the generated multi-
resolution point clouds are consistent.

4.2 Features in progressive deconvolution network

We analyze the outputs of different resolutions of the deconvolution network and
visualize them in the feature space. As shown in Fig. 4, we visualize the generated
point clouds on the “Airplane” and “Chair” categories with the outputs of four
deconvolution networks by using k-means clustering in the feature space.

4.3 Three views of the generated point clouds

As shown in Fig. 13, we visualize seven categories including “Airplane”, “Chair”,
“Car”, “Table”, “Lamp”, “Pistol”, and “Guitar”. It can be seen that our gener-
ated point clouds are realistic.
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Fig. 4. Visualization results for features in four deconvolution networks by k-means
clustering, colored onto the corresponding point clouds. For the “Airplane” and “Chair”
categories, each category has resolutions 256, 512, 1024, and 2048, respectively. Differ-
ent parts of the chair are distinguished more clearly as the resolution of the deconvo-
lution network increases.

4.4 Ablation study on the parameter k

To study the effect of parameter k in the bilateral interpolation on the final
generation result, we perform the ablation studies on parameter k. Specifically,
k represents the number of the nearest neighboring points in the bilateral in-
terpolation. We select k ∈ [2, 4, · · · , 36] with interval 2. The metric results are
shown in Fig. 5. It can be seen that setting k values around 20 can obtain better
performance than other choices. Actually, if k is too small, the small neighbor-
hood cannot produce the discriminative geometric features of the points, leading
to the poor generation results. If k is too large, the large neighborhood results
in the high computational cost of the deconvolution operation. Therefore, for a
good trade-off between the quality of generated point clouds and computational
cost, we set k to 20 in the experiments.

2 4 6 8 1012141618202224262830323436
Number k of the nearest neighboring points

0

2

4

6

8

10

12

14

M
et

ric
 R

es
ul

ts

JSD
MMD-CD
MMD-EMD
COV-CD
COV-EMD
1-NNA-CD
1-NNA-EMD

Fig. 5. Metric results in the cases of different k on the “Chair” category. Note that we
magnify the results of COV-∗ and 1-NNA-∗ by a factor of 10.
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4.5 Quantitative results of the generated point clouds

As shown in Table. 1, we provide the metric results on the “Car” category and
the mean results of all 16 categories. On the “Car” category, metric results of
our PDGN are comparable to the results of PointFlow [7]. This may be because
the “Car” category does not have many thin structures. On all 16 categories,
our PDGN is better than r-GAN [1], tree-GAN [6], and PointFlow [7]. Note that
we reported the mean results of PointFlow for all 16 categories by running the
official code on 16 categories.

Table 1. The comparison results of different methods. The All (16) presents the mean
results of all 16 categories. The best results are highlighted in bold. Note that JSD
scores and MMD-EMD scores are multiplied by 102. MMD-CD scores are multiplied by
103. Lower JSD, MMD-CD, MMD-EMD, 1-NNA-CD, and 1-NNA-EMD show better
performance, while higher COV-CD and COV-EMD indicate better performance.

Category Model JSD (↓) MMD (↓) COV (%, ↑) 1-NNA (%, ↓)

CD EMD CD EMD CD EMD

Car

r-GAN [1] 12.8 1.27 8.74 15.06 9.38 97.87 99.86
l-GAN (CD) [1] 4.43 1.55 6.25 38.64 18.47 63.07 88.07
l-GAN (EMD) [1] 2.21 1.48 5.43 39.20 39.77 69.74 68.32
PC-GAN [4] 5.85 1.12 5.83 23.56 30.29 92.19 90.87
PointFlow [7] 0.87 0.91 5.22 44.03 46.59 60.65 62.36
PDGN (ours) 0.75 1.07 5.27 41.17 42.86 57.89 61.53

All (16)

r-GAN [1] 17.1 2.10 15.5 58.00 29.00 - -
tree-GAN [6] 10.5 1.80 10.7 66.00 39.00 - -
PointFlow [7] 8.42 2.34 7.82 45.85 52.32 58.01 60.22
PDGN (ours) 6.45 1.68 6.21 56.58 53.65 56.85 59.31

5 Visualization Comparison with PointFlow

As shown in Figs. 14 and 15, we compare with the advanced method Point-
Flow [7]. Specifically, we use the trained model provided by PointFlow on GitHub
to generate point clouds. As mentioned in PointFlow [7], it fails in the cases
with many thin structures (like chairs). However, due to the progressive genera-
tor from the low resolution to the high resolution, our method performs well on
point clouds with thin structures (like chairs).
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airplane

Fig. 6. Visualization results on the “Airplane” category. The resolutions are 256, 512,
1024, and 2048, respectively.chair

Fig. 7. Visualization results on the “Chair” category. The resolutions are 256, 512,
1024, and 2048, respectively.
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car

Fig. 8. Visualization results on the “Car” category. The resolutions are 256, 512, 1024,
and 2048, respectively.

Table

Fig. 9. Visualization results on the “Table” category. The resolutions are 256, 512,
1024, and 2048, respectively.

Lamp

Fig. 10. Visualization results on the “Lamp” category. The resolutions are 256, 512,
1024, and 2048, respectively.

pistol

Fig. 11. Visualization results on the “Pistol” category. The resolutions are 256, 512,
1024, and 2048, respectively.
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Guitar

Fig. 12. Visualization results on the “Guitar” category. The resolutions are 256, 512,
1024, and 2048, respectively.
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Main view Left view Top view Main view Left view Top view

Fig. 13. Three views of generated point clouds (“Airplane”, “Chair”, “Car” “Table”,
“Lamp”, “Pistol”, and “Guitar”). The resolution of each generated point clouds is
2048.
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PointFlow
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Fig. 14. Visualization results of our method and PointFlow on the “Airplane” category.
The resolution of each generated point clouds is 2048.
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Fig. 15. Visualization results of our method and PointFlow on the “Chair” category.
The resolution of each generated point clouds is 2048.
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