
Supplementary Material: Learning
Joint Spatial-Temporal Transformations for

Video Inpainting

Yanhong Zeng1,2∗, Jianlong Fu3†, and Hongyang Chao1,2†

1 School of Data and Computer Science, Sun Yat-sen University, Guangzhou, China
2 Key Laboratory of Machine Intelligence and Advanced Computing, Ministry of

Education, China
3 Microsoft Research Asia

zengyh7@mail2.sysu.edu.cn, isschhy@mail.sysu.edu.cn, jianf@microsoft.com

This supplementary material presents the details of complete video inpainting
results in Section A and our stationary mask generation algorithm in Section B.
We provide the details of our network architectures in Section C and the imple-
mentation details in Section D. Finally, extensive ablation studies and analysis
for the proposed Spatial-Temporal Transformer Networks for video inpainting
can be found in Section E.

A Video Inpainting Results

To compare visual results from different inpainting models in our main paper,
we follow the setting used in most video inpainting works [5,7,12]. Specifically,
we sample several frames from video results and show them in Figure 4 and
Figure 5 in the main paper. However, sampled frames cannot truly reflect video
results. Sometimes sampled static frames look less blurry but artifacts can be
stronger in a dynamic video. Therefore, we provide 20 video cases for a more
comprehensive comparison. §.

In practice, we test all the videos in the test sets of DAVIS dataset [1] (90
cases) and Youtube-VOS dataset [11] (508 cases), and we randomly show 20
cases for visual comparisons. Specifically, five cases from DAVIS and five cases
from Youtube-VOS are used to test filling stationary masks. Since Youtube-VOS
has no dense object annotations, we sample 10 videos with dense object anno-
tations from DAVIS to test filling moving masks following the setting used in
previous works [7,8,12]. To conduct side-by-side comparisons and analysis, we se-
lect the two most competitive video inpainting models, LGTSM [3] and CAP [8]
in the videos. LGTSM and CAP are fine-tuned multiple times to achieve optimal
video results by the codes and models publicly provided by their official Github

∗This work was done when Y. Zeng was an intern at Microsoft Research Asia.
†J. Fu and H. Chao are the corresponding authors.
§Video Demo: https://youtu.be/tgiWGdr1SnE

https://youtu.be/tgiWGdr1SnE


2 Y. Zeng, J. Fu, and H. Chao

homepage ¶. We can find from the video results that our model outperforms the
state-of-the-art models in most cases.

B Stationary Mask Generation Algorithm

Inspired by Xu et al. [12], we use stationary masks and moving masks as testing
masks to simulate real-world applications (e.g., watermark removal and object
removal) in the main paper. As introduced in Section 4.1 in the main paper, on
one hand, we use frame-wise foreground object annotations from DAVIS datasets
[1] as moving masks to simulate applications like object removal. On the other
hand, we generate random shapes as stationary masks to simulate applications
like watermark removal. Specifically, for the task of removing watermarks, a user
often draw a mask along the outline of a watermark. Inspired by previous mask
generation algorithms [2,13], we propose a stationary mask generation algorithm
to simulate such a behavior for drawing masks for watermarks. Specifically, the
proposed algorithm randomly generates a set of control points around a unit
circle, and then it smoothly connects these points into a closed cyclic contour
by cubic Bezier curves. The details of the stationary mask generation algorithm
are shown in Algorithm 1 as follows.

Algorithm 1 Algorithm for stationary mask generation. maxPointNum,
maxLength are hyper-parameters to control the statinary mask generation.

mask = zeros(imgHeight, imgWidth)
pointNum = random.uniform(maxPointNum)
startX = origX = random.uniform(imgWidth)
startY = origY = random.uniform(imgHeight)
angles = linspace(0, 2*pi, pointNum)
for i=0 to pointNum do

length = random.uniform(maxLength)
x = sin(angles[i]) * length
y = cos(angles[i]) * length
// comment: ensuring smoothness of contours
Connect (startX, startY) to (x, y) by cubic Bezier curves.
startX = x
startY = y

end for
// comment: ensuring a closed cyclic contour
Connect (startX, startY) to (origX, origY) by cubic Bezier curves.

¶LGTSM: https://github.com/amjltc295/Free-Form-Video-Inpainting
CAP: https://github.com/shleecs/Copy-and-Paste-Networks-for-Deep-Video-Inpainting

https://github.com/amjltc295/Free-Form-Video-Inpainting
https://github.com/shleecs/Copy-and-Paste-Networks-for-Deep-Video-Inpainting


Spatial-Temporal Transformer Networks for Video Inpainting 3

C Details of Network Architecture

The Spatial-Temporal Transformer Network (STTN) is built upon a generative
adversarial framework. Specifically, the proposed STTN plays a role as a gener-
ator in the framework, and we adopt a Temporal PatchGAN (T-PatchGAN) [2]
as our discriminator. The T-PatchGAN is composed of six layers of 3D convolu-
tion layers. Specifically, the T-PatchGAN learns to classify each spatial-temporal
feature as real or fake, while STTN learns to fool the T-PatchGAN. Such an ad-
versarial training allows STTN to model the local-global perceptual rationality
and the spatial-temporal coherence of real videos [2]. In addition to the introduc-
tion in Section 3 in the main paper, we provide the details of the architectures
of STTN and the T-PatchGAN in Table 1 and Table 2, respectively. Specifi-
cally, features inside holes are computed by dilated 2D convolutions. We argue
that STTN is able to leverages multi-scale contexts and updates holes’ features
multiple times to improve attention results.

Module Name Filter Size # Channels Stride/Up Factor Nonlinearity

2dConv 3 × 3 64 2 LeakyReLU(0.2)
2dConv 3 × 3 64 1 LeakyReLU(0.2)
2dConv 3 × 3 128 2 LeakyReLU(0.2)
2dConv 3 × 3 256 1 LeakyReLU(0.2)

Transformer × 8
1 × 1

256
1 -

3 × 3 1 LeakyReLU(0.2)

BilinearUpSample - 256 2 -
2dConv 3 × 3 128 1 LeakyReLU(0.2)
2dConv 3 × 3 64 1 LeakyReLU(0.2)

BilinearUpSample - 64 2 -
2dConv 3 × 3 64 1 LeakyReLU(0.2)
2dConv 3 × 3 3 1 Tanh

Table 1. Details of the proposed Spatial-Temporal Transformer Networks (STTN).
“2dConv” means 2D convolution layers. “Transformer × 8” denotes stacking the pro-
posed spatial-temporal transformers by eight layers. A transformer layer involves 1× 1
and 3 × 3 convolutions (The overview of STTN is shown in Fig. 2 in the main paper).
We use bilinear interpolations for all upsample operations on feature maps [9,10]. We
show whether and what nonlinearity layer is used in the nonlinearity column.

D Implementation details

Hyper-parameters: To maintain the aspect ratio of videos and take into ac-
count the memory limitations of modern GPUs, we resize all video frames into
432 × 240 for both training and testing [5,7,8,12]. During training, we set the
batch size as 8, and the learning rate starts with 1e-4 and decays with factor



4 Y. Zeng, J. Fu, and H. Chao

Module Name Filter Size # Channels Stride Nonlinearity

SN-3dConv 3 × 5 × 5 64 (1,2,2) LeakyReLU(0.2)
SN-3dConv 3 × 5 × 5 128 (1,2,2) LeakyReLU(0.2)
SN-3dConv 3 × 5 × 5 256 (1,2,2) LeakyReLU(0.2)
SN-3dConv 3 × 5 × 5 256 (1,2,2) LeakyReLU(0.2)
SN-3dConv 3 × 5 × 5 256 (1,2,2) LeakyReLU(0.2)
SN-3dConv 3 × 5 × 5 256 (1,2,2) -

Table 2. Details of the Temporal-PatchGAN (T-PatchGAN) discriminator [2]. The
T-PatchGAN is composed of six 3D convolution layers. “SN-3dConv” denotes a 3D
convolution layer that adopts spectral normalization to stabilize GAN’s training [2].

0.1 every 150k iterations. Specifically, for each iteration, we sample five frames
from a video in a consecutive or discontinuous manner with equal probability
for training following Lee et al. [8,10].

Computation complexity: Our full model has a total of 12.6M train-
able parameters. It costs about 3.9G GPU memory for completing a video from
DAVIS dataset [1] by STTN on average. The proposed multi-scale patch-based
video frame representations can enable fast training and inference. Specifically,
our model runs at about 24.3fps with an NVIDIA V100 GPU and it runs at
about 10.43 fps with an NVIDIA P100 GPU on average. Its total training time
was about 3 days on YouTube-VOS dataset [11] and one day for fine-tuning on
DAVIS dataset [1] with 8 Tesla V100 GPUs. The computation complexity of the
proposed spatial-temporal transformers are denoted as:

O(

D∑
l=1

[
2 · (n · HW

pwph
)2 · (pwphCl) + nk2l HWCl−1Cl

]
) ≈ O(n2), (1)

where D is the number of transformer layers, n is the number of input frames,
HW is the feature size, pwph is the patch size, kl denotes for kernel size, and
C is the channel number of features. In Eq. (1), we focus on the computa-
tion complexity caused by the spatial-temporal transformers and leave out other
computation costs (e.g., encoding and decoding costs) for simplification.

E More ablation studies

To verify the effectiveness of the proposed Spatial-Temporal Transformer Net-
works (STTN) for video inpainting, this section presents extensive ablation stud-
ies on DAVIS dataset [1] with stationary masks.

Effectiveness of utilizing distant frames: we test our full model with dif-
ferent sample rates to prove the benefits of utilizing distant frames. Quantitative
comparison results on DAVIS dataset [1] with stationary masks can be found
in Table 3. The first row (s > T ) means that the STTN takes only neighboring
frames as input. Besides, the second row (s = 20) means that the STTN takes



Spatial-Temporal Transformer Networks for Video Inpainting 5

both neighboring frames and distant frames that are uniformly sampled from
the videos in a sampling rate of 20 frames.

Table 3 shows that leveraging visible contexts in distant frames helps in gen-
erating better results especially in terms of VFID with 5.70% relative improve-
ments. Based on the observation that most videos in YouTube-VOS dataset [11]
and DAVIS dataset [1] won’t vary a lot within 10 frames on average, we set the
sample rate as 10 in our full model to avoid sampling redundant frames and to
save computation costs.

Sample Rate PSNR? SSIM(%)? Ewarp (%)† VFID†

s > T 30.55 95.47 0.1802 0.158

s = 20 30.62 95.55 0.1790 0.152

s = 10 (ours) 30.67 95.60 0.1779 0.149

Table 3. Ablation study by utilizing distant frames in different sampling rates. Our
full model set s = 10. ? Higher is better. † Lower is better.

Effectiveness of masked normalization: As shown in Eq. (3) and Eq.
(4) in the main paper, we normalize the value of similarity by the dimension
of vectors and filter out unknown regions for similarities calculating. In this
part, we conduct comparisons between models with or without such a masked
normalization in Table 4. Results show that such an operation is necessary since
it brings improvements with a significant margin comparing with the one without
masked normalization.

PSNR? SSIM(%)? Ewarp (%)† VFID†

w/o masked norm. 30.39 95.32 0.1849 0.162

w/ masked norm. 30.67 95.60 0.1779 0.149

Table 4. Ablation study for the effectiveness of masked normalization operation on
similarity calculation. ? Higher is better. † Lower is better.

Effectiveness of the Temporal PatchGAN Loss: Recent state-of-the-
art deep video inpainting models that adopt attention modules often include a
perceptual loss [6] and a style loss [4] as optimization objectives for perceptually
pleasing results [8,10]. However, they do not leverage specially-designed losses
for ensuring temporal coherence. Chang et al. propose a novel Temporal Patch-
GAN (T-PatchGAN) loss for ensuring both perceptual rationality and spatial-
temporal coherence of videos [2,3]. However, they only apply T-PatchGAN on
consecutive frames while the attention-based deep video inpainting models take
discontinuous frames as input for training. We are the first to introduce T-
PatchGAN in video inpainting models that adopt attention modules and show



6 Y. Zeng, J. Fu, and H. Chao

that T-PatchGAN is also powerful in discontinuous frames. Such a joint opti-
mization encourages STTN to learn both local-global perceptual rationality and
coherent spatial-temporal transformations for video inpainting.

We verify the effectiveness of the T-PatchGAN loss by quantitative compar-
isons in Table 5. Compared with the STTN optimized by a style loss [4] and
a perceptual loss [6] following previous works [8,10], the STTN optimized by a
T-PatchGAN loss performs better by a significant margin, especially in terms
of VFID with 6.9% relative improvements. We also provide a visual comparison
in Fig. 1. The visual results show that the STTN optimized by a T-PatchGAN
loss can generate more coherent results than the one optimized by a perceptual
loss and a style loss. The superior results show the effectiveness of the joint
spatial-temporal adversarial learning in STTN.

losses PSNR? SSIM(%)? Ewarp (%)† VFID†

w/ style [4], w/ perceptual [6] 30.38 95.35 0.1821 0.160

w/ T-PatchGAN [2] 30.67 95.60 0.1779 0.149

Table 5. Ablation study for different losses. ? Higher is better. † Lower is better.

Specifically, perceptual loss and style loss have shown great impacts in many
image generation tasks since they were proposed [4,6,9]. A perceptual loss com-
putes L1 distance between the activation maps of real frames and generated
frames. A style loss is similar to the perceptual loss but aims at minimizing the
L1 distance between Gram matrices of the activation maps of real frames and
generated frames. In practice, the activation maps are extracted from layers (e.g.,
pool1, pool2 and pool3) of a pre-trained classification network (more details see
[8,9,10]). With the help of extracted low-level features, the perceptual loss and
the style loss are helpful in generating high-frequency details.

Unfortunately, perceptual and style losses are calculated on the features of
a single frame and they are unable to leverage temporal contexts. When filling
in a large missing region in videos, the perceptual and style losses are hard to
enforce the generator to synthesize rational contents due to limited contexts.
As a result, they have to generate meaningless high-frequency textures to match
ground truths’ low-level features. For example, for filling the large missing regions
in the second and the third frames in Fig. 1, the STTN optimized by perceptual
and style losses tends to generate high-frequency artifacts in the large missing
regions. Similar artifacts can be found in the failure cases of previous works [2,9].
Since the T-PatchGAN is able to leverage temporal contexts to optimize the
generator, there are fewer artifacts in the results by using the T-PatchGAN. For
the above considerations, we use the T-PatchGAN loss instead of the perceptual
and style losses in our final optimization objectives. In the future, we plan to
design video-based perceptual and style losses which are computed on spatial-
temporal features to leverage temporal contexts for optimization.



Spatial-Temporal Transformer Networks for Video Inpainting 7

w/ T-PatchGAN lossw/ perceptual and style lossesinput frame

Fig. 1. Visual comparisons between an STTN optimized by a perceptual loss [6] and
a style loss [4] and an STTN optimized by a T-PatchGAN loss [2]. These two models
perform similarly in small missing regions, while in large missing regions, the model
optimized by perceptual and style losses tends to generate artifacts in the missing
regions. [Best viewed with zoom-in]

References

1. Caelles, S., Montes, A., Maninis, K.K., Chen, Y., Van Gool, L., Perazzi, F., Pont-
Tuset, J.: The 2018 davis challenge on video object segmentation. arXiv (2018)

2. Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Free-form video inpainting with 3d
gated convolution and temporal patchgan. In: ICCV. pp. 9066–9075 (2019)

3. Chang, Y.L., Liu, Z.Y., Lee, K.Y., Hsu, W.: Learnable gated temporal shift module
for deep video inpainting. In: BMVC (2019)

4. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional
neural networks. In: CVPR. pp. 2414–2423 (2016)

5. Huang, J.B., Kang, S.B., Ahuja, N., Kopf, J.: Temporally coherent completion of
dynamic video. TOG 35(6), 1–11 (2016)

6. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution. In: ECCV. pp. 694–711 (2016)

7. Kim, D., Woo, S., Lee, J.Y., Kweon, I.S.: Deep video inpainting. In: CVPR. pp.
5792–5801 (2019)

8. Lee, S., Oh, S.W., Won, D., Kim, S.J.: Copy-and-paste networks for deep video
inpainting. In: ICCV. pp. 4413–4421 (2019)

9. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpaint-
ing for irregular holes using partial convolutions. In: ECCV. pp. 85–100 (2018)

10. Oh, S.W., Lee, S., Lee, J.Y., Kim, S.J.: Onion-peel networks for deep video com-
pletion. In: ICCV. pp. 4403–4412 (2019)



8 Y. Zeng, J. Fu, and H. Chao

11. Xu, N., Yang, L., Fan, Y., Yue, D., Liang, Y., Yang, J., Huang, T.: Youtube-vos:
A large-scale video object segmentation benchmark. arXiv (2018)

12. Xu, R., Li, X., Zhou, B., Loy, C.C.: Deep flow-guided video inpainting. In: CVPR.
pp. 3723–3732 (2019)

13. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting
with gated convolution. In: ICCV. pp. 4471–4480 (2019)


	Supplementary Material: Learning Joint Spatial-Temporal Transformations for Video Inpainting

