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1 More Details of Experimental Settings

1.1 Generalization Ability of the Attack

We provide the details of our experimental settings in Section 5.6. We use 99
questions of 5 houses for both of the following 2 settings.

Different questions. For each question, we generate spatiotemporal per-
turbations based on the current question, and then evaluate another question
given the scenes with the same perturbed object.

Different starting points. For each question, we randomly sample another
question, and then use its starting point as the initilization point for the agent to
answer the current question. The average distance change for the starting point
is 2.47 (maximum is 9.52, minimum is 0.83). Among the 99 new starting points,
45.45% of them are in the different rooms.

1.2 Improving Agent Robustness with Adversarial Training

We provide the details of our experimental settings in Section 5.7, where we
evaluate the effectiveness of adversarial training for T−10 setting.

Training. We use the SGD optimizer for adversarial training, with a learning
rate of 0.001. Following [1], both the QA and NAV modules are trained for 300
epochs. In each training batch, we generate one perturbed scene (either adding
the adversarial perturbation or the Gaussian noise) for each clean scene, so
that the numbers of clean scenes and perturbed scenes are the same per batch,
i.e., 4 clean scenes and 4 perturbed scenes per batch in our experiments. The
magnitude of adversarial perturbations is 32/255. For Gaussian noises, we choose
the maximum noise severity level following [3], and set the mean to be 0, the
standard deviation to be 0.38. The other settings are the same as that in Section
5.3.

Testing. For evaluation, we use the same approaches as for training to add
either adversarial perturbations or Gaussian noises to the chosen 3D objects.
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1.3 Perceptual Studies via Amazon Mechanical Turk (AMT)

We design a perceptual study on AMT to figure out which features are more
sensitive and attractive for human predictions, i.e., shape or texture. For each
question, the participants need to select the correct category of the object in the
picture. We do not set any time limit for the responses.

In total, we collect 30 objects in different scenes, each of which is perturbed
on shape and texture, respectively. Thus, we have a total of 60 questions, namely
60 Human Intelligence Tasks (HITs). For each HIT, we make 10 assignments,
i.e., each HIT will be answered by 10 different human workers. As a result, we
finally collect 600 responses for our perceptual study.

For fair comparisons, we use the same hyper-parameters for shape and texture
attacks. We limit the overall perturbation magnitude to 32/255, as in other
settings.

2 Additional Experimental Results

In this section, we provide more experimental results.

2.1 Texture v.s. Shape

In this section, we study the importance of texture and shape for model predic-
tions. For a fair comparison, we set the same constraint of perturbation mag-
nitude for both texture and shape attacks. According to the accuracy of the
texture attack (4.26%) and shape attack (27.14%) in the T−30 task, perturbing
textures is far more effective than perturbing shapes. A question emerges: Which
is more important for model prediction, texture or shape?

A recent study [2] demonstrated that CNNs are strongly biased towards rec-
ognizing textures. Compared to long-range dependencies encoded in the shapes
of objects, standard CNNs prefer local textures [4]. Thus, it is not uncommon
to see that the agent is more likely to make errors when 3D object textures are
adversarially perturbed.

Fig. 1. Visualization of scene
perturbed on different physical
parameters. From left to right:
clean, shape attacks, and texture
attacks.

Since deep learning prefers textural informa-
tion when making decisions, it is worth studying
which features humans find more beneficial. As
a preliminary step, we examined which features
are more sensitive for human predictions with a
user study conducted on the Amazon Mechani-
cal Turk (AMT). With each object adversarially
perturbed in texture and shape (c.f. Figure 1),
participants were asked to assign those adver-
sarial objects to one of five classes (the ground-
truth class, the top-3 adversarial target classes,
and “none of the above”). Our results showed
that the classification accuracy for adversarial
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texture manipulation (83.3%) was higher than that for shape (32.7%). It indi-
cates that shape is a more sensitive parameter for human predictions compared
to texture. This is obvious since people are more likely to recognize a table with
different textures rather than a table made out of wood but showing a strange
shape.

In conclusion, embodied agents trained upon most current strategies are more
sensitive to texture rather than shape. It is in stark contrast to humans and
reveals fundamental differences in classification strategies between humans and
machines. Therefore, to bridge the gap between human perception and embodied
perception, it is important to train agents that can better capture shape-based
features. Could we obtain stronger policies for agents if we train them with
shape-based adversarial perturbations? We put it as future work.

2.2 Attention similarity

To understand the transferability of attacks between different models, we inves-
tigate their attention correlation. We first visualize the attention map of the last
5 views using PACMAN and VIS-VGG in Figure 2, and we observe that the
attention zones highlight similar context of the scenes for prediction. Moreover,
we compare the top-3 important views between PACMAN and VIS-VGG on 32
questions, and we find that 83.33% of the included views are the same for both
models. Such attention similarities between different models could facilitate the
transferability of black-box attacks.

(a) (b)

Fig. 2. The attention maps of different models. In both scenes (a) and (b), the first
line presents the attention maps of PACMAN, and the second line presents those of
VIS-VGG. The attention zones highlight similar context of the scenes for prediction.

2.3 Transfer Attack onto a non-differentiable Renderer

Here, we present more experimental results of transferring our generated spa-
tiotemporal perturbations to attack a non-differentiable renderer for EQA tasks.
In addition to the results of T−30 task discussed in Section 5.5, we further show
the results of T−10 and T−50 tasks in Figure 3 and 4, respectively. Again, we
observe that our attacks transfer to the non-differentiable renderer.
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Fig. 3. Transfer attack on a non-differentiable renderer for task T−10. Methods (1) to
(4) represent PACMAN, NAV-GRU, NAV-React, and VIS-VGG, respectively.
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Fig. 4. Transfer attack on a non-differentiable renderer for task T−50. Methods (1) to
(4) represent PACMAN, NAV-GRU, NAV-React, and VIS-VGG, respectively.

2.4 Sample Adversarial Attacks for Question Answering and Visual
Recognition

In this section, we show more examples of adversarial scenes generated using
our attack framework. Figures 5, 6, 7, and 8 illustrate some examples of our
adversarial attacks for question answering. All of these questions are answered
correctly by agents in clean scenes, but wrongly in corresponding adversarial
scenes. Examples for visual recognition are shown in Figures 9, 10 and 11. All
of these objects are classified correctly by agents in clean scenes, but wrongly in
corresponding adversarial scenes.

(a) Clean scene (b) Adversarial scene

Fig. 5. Given the question “What color is the mirror?”, we show the last 5 views of
the agent for EQA in the same scene with and without adversarial perturbations. The
contextual objects perturbed including table and mirror. The ground truth prediction
is “white”. The agent gives the wrong answer “black” to the question.
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(a) Clean scene (b) Adversarial scene

Fig. 6. Given the question “What color is the shoes cabinet?”, we show the last 5 views
of the agent for EQA in the same scene with and without adversarial perturbations. The
contextual objects perturbed including cabinet and plant. The ground truth prediction
is “brown”. The agent gives the wrong answer “yellow” to the question.

(a) Clean scene (b) Adversarial scene

Fig. 7. Given the question “What room is the sink located in?”, we show the last 5 views
of the agent for EQA in the same scene with and without adversarial perturbations. The
contextual objects perturbed including sink and water tap. The ground truth prediction
is “bathroom”. The agent gives the wrong answer “kitchen” to the question.

(a) Clean scene (b) Adversarial scene

Fig. 8. Given the question “What room is the cup located in?”, we show the last 5 views
of the agent for EQA in the same scene with and without adversarial perturbations.
The contextual objects perturbed including chessboard, cup, and sofa. The ground
truth prediction is “living room”. The agent gives the wrong answer “bedroom” to the
question.
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Forward Turn Right Turn Right Turn Right Output

(a) Clean Scene

Forward Turn Right Turn Right Turn Right Output

(b) Adversarial Scene

Fig. 9. The last 5 views of the agent for EVR in the same scene with and without ad-
versarial perturbations. The contextual objects perturbed are table, kettle, microwave,
and cabinet. After the adversarial attack, the agent fails to recognize the cabinet in
subfigure (b). Red boxes indicate the bounding box for object detection and yellow
boxes show the adversarially perturbed texture regions.

(a) Clean scene (b) Adversarial scene

Fig. 10. The last 5 views of the agent for EVR in the same scene with and without
adversarial perturbations. The contextual objects perturbed are dog, book, desk, vase,
and carpet. After the adversarial attack, the agent fails to recognize the stereoset in
subfigure (b). Red boxes indicate the bounding box for object detection and yellow
boxes show the adversarially perturbed texture regions.

2.5 Sample Attention Maps of the Agent for Question Answering

As shown in Figures 12, 13, 14, and 15, we provide more visualization of the ego-
centric views and corresponding attention maps when agents answer questions.
We can observe that the agents use clues from contextual objects to answer lo-
cational and compositional questions while mainly focus on target objects when
predicting their colors.

2.6 Sample Adversarial Attacks for Navigation

In this section, we show more examples of adversarial scenes for navigation in
Figures 16, 17, and 18. Agents navigate correctly to the end in all of the clean
scenes, but stop ahead of time in corresponding adversarial scenes.

(a) Clean scene (b) Adversarial scene

Fig. 11. The last 5 views of the agent for EVR in the same scene with and without
adversarial perturbations. The contextual objects perturbed are sofa, cabinet, stereo
set, heating, and carpet. After the adversarial attack, the agent fails to recognize the
bed in subfigure (b). Red boxes indicate the bounding box for object detection and
yellow boxes show the adversarially perturbed texture regions.
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(a) Clean scene (b) Attention in clean scene

(c) Adversarial scene (d) Attention in adversarial scene

Fig. 12. Egocentric views and corresponding attention maps when the agent answers
the question, “What color is the ironing board?”. The agent mainly focuses on the
target object when predicting its color in the clean scene (subfigure (a) and (b)). The
adversarial scene and corresponding attention maps are shown in subfigure (c) and (d).
The ground truth prediction is “white”. The agent gives the wrong answer “brown” to
the question.

(a) Clean scene (b) Attention in clean scene

(c) Adversarial scene (d) Attention in adversarial scene

Fig. 13. Egocentric views and corresponding attention maps when the agent answers
the question, “What color is the stereo set?”. The agent mainly focuses on the target
object when predicting its color in the clean scene (subfigure (a) and (b)). The adver-
sarial scene and corresponding attention maps are shown in subfigure (c) and (d). The
ground truth prediction is “black”. The agent gives the wrong answer “white” to the
question.
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(a) Clean scene (b) Attention in clean scene

(c) Adversarial scene (d) Attention in adversarial scene

Fig. 14. Egocentric views and corresponding attention maps when the agent answers
the question, “What room is the chessboard located in?”. The agent uses clues from
contextual objects to answer locational and compositional questions in the clean scene
(subfigure (a) and (b)). The adversarial scene and corresponding attention maps are
shown in subfigure (c) and (d). The ground truth prediction is “living room”. The
agent gives the wrong answer “bathroom” to the question.

(a) Clean scene (b) Attention in clean scene

(c) Adversarial scene (d) Attention in adversarial scene

Fig. 15. Egocentric views and corresponding attention maps when the agent answers
the question, “What room is the toy located in?”. The agent uses clues from contextual
objects to answer locational and compositional questions in the clean scene (subfigure
(a) and (b)). The adversarial scene and corresponding attention maps are shown in
subfigure (c) and (d). The ground truth prediction is “living room”. The agent gives
the wrong answer “kitchen” to the question.

(a) Clean scene

(b) Adversarial scene

Fig. 16. Egocentric views of the agent in the same scene with and without adversarial
perturbations. As shown in subfigure (b), we perturb the textures of two doors and the
rug. The agent stops at the 5-th planner step.
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(a) Clean scene

(b) Adversarial scene

Fig. 17. Egocentric views of the agent in the same scene with and without adversarial
perturbations. As shown in subfigure (b), we perturb the textures of the plant, the
door, and the window. The agent stops at the 4-th planner step.

(a) Clean scene

(b) Adversarial scene

Fig. 18. Egocentric views of the agent in the same scene with and without adversarial
perturbations. As shown in subfigure (b), we perturb the textures of the bench, the
door, and the window. The agent stops at the 12-th planner step.
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