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Abstract. In this supplementary material, we first showcase additional
qualitative results in the attached video. We then showcase additional
quantitative results on two additional evaluation datasets, MCL-JVC
and VTL, as well as additional runtime results. Moreover, we provide ad-
ditional neural network architecture details for the encoder/decoder and
the conditional entropy module. We then conduct some additional quan-
titative ablation analysis: showcasing effects of internal learning steps on
rate-distortion performance, effects of GoP sizes in video codec perfor-
mance, and effects of input frames on performance.

1 Additional Qualitative Results

We first provide additional qualitative results in the form of a video, attached
as eccv2020_supp.mp4. In the video, we highlight our compression framework
vs. H.265 veryslow on 3 low-framerate video sequences - the first two 12Hz UVG
video and the last one 10Hz NorthAmerica video. Our approach outperforms
H.265 in these settings in MS-SSIM while achieving a lower bitrate. Qualitatively,
we can see that while H.265 tends to introduce motion artifacts within various
frames in these low framerate settings, our approach preserves a more even
quality of detail within each frame.

Additionally, we provide a few more frame comparisons of our approach vs.
H.265 veryslow and H.264 veryslow in Fig. 1. We see a similar pattern as demon-
strated in the video. Because our reconstructions contain less variance in detail
quality, they also contain fewer artifacts compared to H.265 and H.264. We do
note, however, that H.265 / H.264 tends to assign more bits to certain high
frequency details, such as text, providing slightly sharper outputs than our ap-
proach.

2 Evaluations on Additional Datasets

We run additional evaluations on two datasets, MCL-JVC [6] and Video Trace
Library (VTL) [2]. MCL-JVC is a video benchmarking dataset consisting of
1920x1080 video frames ranging from 24-30fps. VTL is a video benchmark dataset
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[UVG] BPP: 0.031, MS-SSIM: 0.878

H.264 (veryslow)

[UVG] BPP: 0.028, MS-SSIM: 0.875

Ours

[UVG] BPP: 0.076, MS-SSIM: 0.965

H.265 (veryslow)

[UVG] BPP: 0.104, MS-SSIM: 0.959

H.264 (veryslow)

[UVG] BPP: 0.088, MS-SSIM: 0.958

Ours

[UVG] BPP: 0.076, MS-SSIM: 0.965

H.265 (veryslow)

[UVG] BPP: 0.104, MS-SSIM: 0.959

H.264 (veryslow)

[UVG] BPP: 0.088, MS-SSIM: 0.958

Ours

[NorthAmerica] BPP: 0.092, MS-SSIM: 0.975

H.265 (veryslow)

[NorthAmerica] BPP: 0.114, MS-SSIM: 0.965

H.264 (veryslow)

[NorthAmerica] BPP: 0.105, MS-SSIM: 0.973

Ours

[NorthAmerica] BPP: 0.065, MS-SSIM: 0.983

H.265 (veryslow)

[NorthAmerica] BPP: 0.086, MS-SSIM: 0.977

H.264 (veryslow)

[NorthAmerica] BPP: 0.079, MS-SSIM: 0.977

Ours

[NorthAmerica] BPP: 0.047, MS-SSIM: 0.985

H.265 (veryslow)

[NorthAmerica] BPP: 0.047, MS-SSIM: 0.978

H.264 (veryslow)

[NorthAmerica] BPP: 0.047, MS-SSIM: 0.981

Fig. 1: Additional qualitative demonstration of our approach vs H.265 / H.264 on 12
Hz 1920 × 1080 UVG video and 10 Hz 1920 × 1200 NorthAmerica video.

consisting of lower resolution video frames (352x288). Due to the wide discrep-
ancy of video lengths in the VTL dataset, we set the maximum video length to
300. We run our standard set of video codec baselines on the datasets (H.265
veryslow, H.265 medium, H.264 veryslow), and set the max Group of Pictures
(GoP) size to the length of the video.

We plot rate-distortion curves on MCL-JVC, and demonstrate that we out-
perform video codecs while remaining competitive with the state-of-the-art prior
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work of Djelouah et al. [5], which utilizes bi-directional interpolation to depend
on both the past and future.

We also evaluate our approach on VTL, which yields surprising observations.
A cursory look at the rate-distortion plots show that our approach far under-
performs those of other video codecs, especially on PSNR. However, a closer
analysis of the qualitative results show high-frequency artifacts in the source
video that our frame encoder does not capture. We discuss these results and
offer an explanation for the quantitative discrepancy of our approach with other
codecs below.

2.1 Rate-Distortion Curve on MCL-JVC
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Fig. 2: Rate-distortion plot of our approach vs. competing baselines on MCL-JVC.

We plot the rate-distortion curve on MCL-JVC, as shown in Fig. 2. We ob-
serve that our approach outperforms other video codec baselines. Surprisingly,
it is also competitive with the state-of-the-art work Djelouah et al. [5]. This is
interesting because Djelouah et al. utilizes a bidirectional model - each inter-
mediate frame depends on a mixture of not only the past, but future frames as
well. Meanwhile, in our approach each frame only as a probabilistic dependence
on the past frame through the entropy model, as we intend our approach to
eventually be applied to an online setting.

2.2 Analysis of VTL: High-Frequency Information

When we initially view the rate-distortion curves in Fig. 3, we see that our
approach underperforms video codecs by a large margin, especially on PSNR.
In order to understand the quantitative discrepancy, we qualitatively analyze
the frames of the source video and reconstructed video, as shown in Fig. 4. We
observe that there exist high-frequency information in the source frames, often
in the form of artifacts (see the color bands across the bridge), that our frame
encoder is not able to capture even at a reasonably high bitrate.

We offer some hypotheses and discussions of these results. In our approach,
each frame is encoded and reconstructed independently with an image encoder
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Fig. 3: Rate-distortion plot of our approach vs. competing baselines on VTL.

Fig. 4: Qualitative comparison of source VTL frames (left) vs. our reconstructions
(right)
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/ decoder. Our encoder/decoder may contain an inductive bias that might not
be able to capture the high-frequency artifacts in the full frame, which explains
why they are essentially “denoised” in the reconstruction. This could be due
to the architecture of the encoder/decoder, or due to training the model on a
different source dataset (Kinetics). And because our conditional entropy model
only reduces the entropy/bitrate and doesn’t improve reconstruction in the same
way motion estimation/interpolation does, the performance of our approach is
only dependent on the quality of the reconstructions provided by the image en-
coder/decoder. In the meantime, video codecs utilizing explicit transformations
only have to encode full frame information in the I-frames, leaving P-frames and
B-frames to only encode the residual high-frequency artifact information.

There are pros and cons for both approaches. Explicit transformations may
reconstruct high-frequency information better in intermediate frames, but can
introduce additional artifacts through erroneous/quantized motion estimation
and residual coding. Our approach of independent frame encoding guarantees
no additional motion artifacts will be introduced, but how well high-frequency
information can be encoded depends on the nature of the frame encoder.

2.3 Requesting Access to JCT-VC Test Sequences

We were not able to obtain access to the JCT-VC [1] test sequences for eval-
uation. We received the following response from the JCT-VC chairs: “Due to
copyright restrictions, the JCT-VC and JVET databases of test sequences are
only available to accredited participants in our image/video standardization ac-
tivities. The contributors of some of those test sequences do not allow us to give
access to everyone, and we need to respect the decisions of the copyright hold-
ers...The JCT-VC and JVET databases of test sequences are not intended for
general use or for academic research purposes.”

3 Additional Runtime Details

We provide additional runtime details below. Specifically, we provide 1) addi-
tional comparisons of the entropy coding implementation of prior works, where
made available by the authors, and 2) the runtime of our video codec baselines.
The results are shown below, in Tab. 1, 2:

ms / frame Wu et al. [7] Lu et al. [4] Ours

Encoding 281 ∼ 9000 140

Decoding ∼ 800000 (joint with GPU decoding) ∼ 9000 139
Table 1: Comparison of entropy coding implementation runtime among prior work.

Our entropy coding implementation is faster than those of prior work. Fur-
thermore, our approach is on par with H.265 veryslow in terms of encoding time,
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H.265 veryslow H.265 medium H.264 veryslow HEVC HM AVC JM

ms / frame 914 93 220 ∼ 24000 ∼ 8400
Table 2: Comparison of runtime among video codec benchmarks.

and is significantly faster than HEVC HM and AVC JM. In general HEVC HM
and AVC JM are orders of magnitude slower than their ffmpeg libx265/libx264
(H.265/H.264) counterparts. As always, we note that there are numerous oppor-
tunities to optimize our implementation further, as the bulk of our end-to-end
runtime cost (1.19 s for encoding, 0.65 s for decoding) is due to I/O between
CPU/GPU/the file system.

4 Additional Architecture Details
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Fig. 5: Diagram of our image encoder and decoder model.

4.1 Architecture Details of Image Encoder / Decoder

The architecture of our image encoder and decoder are inspired from that of
[3]. A diagram is shown in Fig. 5. The encoder consists of 5 × 5 downsampling
convolutional layers as well as residual blocks in between. Each residual block
consists of a simple sequence of 3× 3 conv, Leaky ReLU, 3× 3 conv layer. The
decoder consists of a similar architecture, except each downsampling conv in the
encoder is now replaced with a 5× 5 upsampling transposed convolution in the
decoder. Let the number of channels in each conv layer be denoted as N (this
includes the number of channels of the quantized code). For the lower bitrates,
we set N = 192, and for the higher bitrates, we set N ∈ [250, 350]. Since our
conditional entropy model imposes its own information bottleneck depending on
the λ we set in the rate-distortion loss function as well as the target bitrate Ra

we want to enforce (see Section 3.3), we intentionally set the number of channels
to be higher than necessary so that the channel dimensions themselves do not
unnecessarily constrain information. We have not attempted to tune the number
of channels for speed performance, though that would certainly provide further
gains in speed.
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As mentioned in Section 3.1 in the main paper, we note that we removed all
non-local layers as they imposed a large bottleneck of speed and memory usage.

4.2 Additional Architecture Details of Hyperprior Encoder /
Decoder

The architecture of the hyperprior encoder and decoder is listed in Fig. 4 in the
main paper. Each residual block referred to in that figure is the same as the
residual block defined above in Section 4.1 and Fig. 5 here in supplementary
material.

In the hyperprior decoder, all feature maps at the spatial resolution of the
main image code yi or lower have N channels, with N being the same as the
one defined above. All feature maps at a higher spatial resolution (the ones
interspersed with the upsampling/downsampling IGDN/GDN layers) have M
channels, with the exception of the highest resolution channel (which has 5
channels). M ranges from 80 at lower bitrates to 192 at higher bitrates. Each
convolution layer in the hyperprior decoder originally has a kernel size of 5× 5,
though we replace the layer with two 3× 3 conv layers for speed gains.
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Fig. 6: MS-SSIM and PSNR rate-distortion plot on the first 50 frames of the UVG
ShakeNDry video sequence of our approach as we vary the number of internal learning
steps.

5 Internal Learning - Effect of Num. Steps on the
Rate-distortion Curve

We additionally analyze how much the performance of our models improve as
we increase the number of gradient steps used in internal learning of our frame
latent codes yi and zi for each frame i. To do this, we evaluate on the first 50
frames of the ShakeNDry UVG video sequence.
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Results are shown in Fig. 6 for both MS-SSIM and PSNR, where we plot the
rate-distortion curves of our base model as well as with internal learning of 1,
10, 30, 100 gradient steps. Specifically, we use stochastic gradient descent with
Nesterov momentum of 0.9 - we decrease the learning rate at higher gradient
steps to reduce instability. We can see that in general, increasing the number
of gradient steps reduces bitrate and distortion, though performance appears to
saturate after 30 gradient steps. In the main paper, we use a fixed number of 10
steps for every test video frame.

6 Effect of GoP Size on Codec Performance
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Fig. 7: Analysis of GoP size on codec performance in UVG.

We benchmark H.265 and H.264 on different Group of Pictures (GoP) set-
tings to analyze how GoP affects codec performance. We adjust the maximum
and minimum GoP size by tuning keyint/min-keyint and keyint/keyint_min
in libx265 and libx264 respectively, in ffmpeg. We test using the default ffmpeg
settings: (max = 250,min = 25), as well as (max = 12,min = 1) and (max =
length of video,min = 1). The results over UVG video are plotted in Fig. 7.
We see that there is a marginal gap between a smaller GoP size of 12 and the
default settings; the gap between the default settings and the maximum GoP
size is thin.

7 Effect of Number of Input Frames on Performance

Recall that the hyperprior decoder in our entropy model only relies on the previ-
ous frame yi−1 as well as the current hyperprior code as input to produce distri-
butions for the current code yi, due to the fact that we make a 1st-order Markov
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assumption. This was done intentionally to preserve the simplicity and efficiency
of our model. However, for the sake of comparison, we decided to vary k as the
number of past frames input into our hyperprior encoder/decoder to expand be-
yond our first-order assumption. We experiment with a frame encoder/decoder
pre-trained on NorthAmerica and UVG, hence fixing the reconstruction qual-
ity. We vary k with a simple concatenation baseline - concatenating the k past
frames as one tensor and slightly modifying the architecture of the hyperprior
encoder/decoder to accommodate this input. The results are as follows:

k 1 2 3 4

Bitrate (NorthAmerica) 0.381 0.378 0.375 0.378

Bitrate (UVG) 0.175 0.186 0.179 0.182

Table 3: Concatenation of multiple past frames (k) as input to our entropy model, for
both NorthAmerica/UVG. Reconstruction quality is fixed.

Given these results, we observe that it is non-trivial to reduce the bitrate of
videos simply by concatenating additional past inputs into our entropy model.
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