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1 Overview

In this supplementary material we provide:

— More ablation studies on the pace prediction task design in Sec. 2

— Algorithm implementation details in Sec. 3

— More qualitative results of attention maps with different paces in Sec. 4

— A video file suppleVideo.mp4 illustrating the basic idea of pace prediction.
Note that we randomly sample videos with different paces from the UCF101
dataset [4]. See Table 1 for more details on the pace prediction accuracy.

2 Additional Ablation Studies on Pace Prediction Task

Here we provide additional ablation studies on the design of the pace prediction
task, including (1) Pace prediction performance (Table 1). (2) Evaluation of the
performance on slow pace as described in our paper (Table 2). (3) Investiga-
tion on different pace steps (Table 3). (4) Analysis on video play direction, i.e.,
forwards or backwards (Table 4).

Pace prediction accuracy. We report the pretext task performance (i.e.,
pace prediction accuracy) and the downstream task performance (i.e., action
recognition accuracy) on UCF101 dataset in Table 1. It can be seen from the
table that with the increase of the maximum pace, the pretext task becomes
harder for the network to solve, which leads to degradation of the downstream
task. This further validate our claim in the paper that a pretext task should be
neither too simple nor too ambiguous.

Table 1. Pace prediction accuracy w.r.t. different pace design.

Pre-training Method # Classes Pace rea. acc. UCF acc.

X Random - - 56.0
v p=11,3] 3 77.6 71.4
v p=11,4] 4 69.5 72.0
v p=11,5] 5 61.4 72.0
v p=1[1,6] 6 55.9 71.1
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Slow pace. In our paper, we propose two different methods to generate
video clips with slow pace: replication of previous frames or interpolation with
existing algorithms [1]. We choose the replication in practice as most modern
interpolation algorithms are based on supervised learning, while our work focuses
on self-supervised learning, forbidding us to use any human annotations.

As shown in Table 2, compared with normal and fast paces, if we use normal
and slow paces, the performance of the downstream task decreases (73.9—72.6).
While when combining with both slow and fast pace (absolute pace as described
in the paper), no performance change is observed, which again validates our
choice of the pace configuration.

Table 2. Evaluation of slow pace.

Config. Pace # Classes UCF10 Acc.
Baseline [1,2,3,4] 4 73.9
Slow [5.3.3.1 4 72.6
Slow-fast [3,3,1,2,3] 5 73.9

Pace step. Based on the better performance achieved by the fast pace as
shown above, we take a closer look into the fast pace design, by considering
different interval steps, i.e., frame skip. For simplicity, in the paper we showcase
with the step that equals one (baseline) between each fast pace where the paces
are {1,2,3,4}. Here we further explore the interval steps of two and three so as to
introduce larger motion dynamics into the learning process. It can be observed
from Table 3 that by increasing the interval steps, performance could be further
improved, but tends to saturate when the step is too large.

Table 3. Evaluation of different pace steps.
Step Pace # Classes UCF10 Acc.

1 [1,2,34] 4 73.9
2 [1,3,5,7] 4 74.9
3 [1,4,7,10] 4 74.7

Forwards v.s. backwards. It has been a long standing problem that whether
a forward played video can be considered as the same as its backward played
version, in self-supervised video representation learning. Some works [3,2] argue
that these two versions should be attributed to the same semantic labels, while
Wei et al. prone to distinguish the forwards and backwards video [5]. In the
following, we investigate these two opinions based on our method as shown in
Table 4.
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As for the random backwards with four classes, we consider forwards and
backwards videos as the same pace samples, while for backwards with eight
classes, they are considered to be different samples. It can be seen from the ta-
ble that, both configurations achieve lower performance than our baseline. We
suspect the reason is that to distinguish the backwards from forwards, it is es-
sentially a video order prediction task though in some order prediction work [2,3]
they are considered to be the same. When combing the proposed pace reasoning
task with such an order prediction task, the network will be confused towards an
ambiguous target. As a result, the downstream task performance is deteriorated.

Table 4. Evaluation of video forwards v.s. backwards.

Config. Pace # Classes UCF10 Acc.
Baseline [1,2,3,4] 4 73.9
Rnd backwards [1,2,3,4] 4 73.0
Backwards [£1, +£2, £3, 4] 8 73.7

3 Implementation Details

Here we present the algorithms of the proposed approach, with two possible
solutions as mentioned in the paper: pace prediction with contrastive learning
on same video context and pace prediction with contrastive learning on same
video pace.

4 Attention Visualization

Finally, we provide the attention map visualization on more video clips with
different paces. Starting from the same initial frame, we sample 16-frames clips
with different paces p = 1,2, 3,4. Then we show the attention maps for every 3
frames. Note that only one attention map is generated based on a 16-frame video
clip. It can be seen from Fig. 1, clips with larger pace p contain larger motion
dynamics as they span more frames. The attention maps are also becoming active
in larger motion areas with the increase of pace p.
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Algorithm 1 Pace prediction with contrastive learning on same video context.

Input: Video set X, pace transformation gpac(.), Acis, Actr, backbone network f.
Output: Updated parameters of network f.

1: for sampled mini-batch video clips {z1,...,2n} do
for i =1to N do

3 Random generate video pace p;, p;’

4 %l = gpac(mz‘pz)

5: T; = gpac(@ilp:")

6: zi = f(Zs)

7 zi' = (@)

8 end for

9 forie{l,...,2N}and j € {1,...,2N} do

10: sim(zi, 2;) = zi ' 2

11: end for

12: Define Letr_se = — 5 exp(sim(z,2;7))

2N Z‘jlog Zexp(sim(z,;,zi’))-‘—.z exp(sim(z;,27)) "
7, i i, J

14: Les = 2N > Z yi(log s eXpe(fp?h ))
15: L= XisLers + )\ctrﬁctr,sc

16: Update f to minimize £

17: end for

Algorithm 2 Pace prediction with contrastive learning on same video pace.

Input: Video set X, pace transformation gpac(.), Acis, Actr, backbone network f.
Output: Updated parameters of network f.

1: for sampled mini-batch video clips {z1,...,zn} do

2: for i=1to N do

3: Random generate video pace p;

4: Ti = gpac(Tilpi)

5: Zi = f(fl)

6: end for

T forie{l,...,N}and j€{1,...,N} do

8: sim(zi, 25) = zi ' 2z

9: end for ‘

10:  Define Lot sp =~y 3 log = T e e W e T )
i,7, i

11:

M

122 Las=-x 2 Z yi(log %)
13: [, )\clchls + )\ctrcct'r sp

14: Update f to minimize £

15: end for
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Fig. 1. Attention visualization (using tool from [6]) of the convb layer from self-
supervised pre-trained model.
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