A Generic Visualization Approach for
Convolutional Neural Networks
Supplementary Material

Ahmed Taha, Xitong Yang, Abhinav Shrivastava, and Larry Davis

University of Maryland, College Park

S1 Extended Related Work

Classification networks learn class-logits € R™<. The number of logits is equal to
the number of classes N,.. There is a clear one-to-one mapping between classes
and logits. This mapping is vital for class-activation mapping (CAM) and Grad-
CAM approaches because their visualizations rely on the weights or gradients
of a particular logit. In contrast, retrieval networks learn a feature embedding
€ R?. The output dimensionality does not equal the number of classes. Thus,
there is no one-to-one mapping between classes and output dimensions. This
lack of mapping is why CAM and Grad-CAM suffer on retrieval networks. To
highlight this limitation, we train a retrieval network with various ranking losses.
The following paragraphs review the two ranking losses employed in the main

paper.

Retrieval networks learn a feature embedding where objects within the same
class are closer than objects from different classes. To learn this feature em-
bedding, a retrieval network is trained with ranking losses such as contrastive,
triplet, and N-pair losses.

In the main paper, we employ triplet loss [6] for its simplicity and efficiency.
Equation [S1| shows the triplet loss formulation

TL(a,p,n) = [(D(la], [p]) = D(la], [n]) +m)], (S1)

where [¢], = max(0, *) is the hinge function and m is the margin between differ-
ent classes in the feature embedding. |¢| and D(,) are the embedding and the
Euclidean distance functions, respectively. This formulation attracts an anchor
image a of a specific class closer to a positive image p from the same class than
it is to a negative image n.

We leverage the semi-hard sampling [6] strategy. In semi-hard negative sam-
pling, instead of picking the hardest positive-negative samples, all anchor-positive
pairs and their corresponding semi-hard negatives are considered. Semi-hard neg-
atives are further away from the anchor than the positive exemplar, yet within
the banned margin m as shown in Figure

The performance of triplet loss relies heavily on the sampling strategy be-
cause every anchor sample is paired with a single negative sample. N-pair loss
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Fig. S1: Triplet loss tuple (anchor, positive, negative) and margin m. The (h)ard,
(s)emi-hard and (e)asy negatives are highlighted in black, gray, and white, re-
spectively.
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Fig.S2: The difference between triplet and N-pair losses using a single positive
pair (a,p) and three negative (n) samples. The triplet loss pushes the anchor a
away from a selected negative sample while N-pair pushes the anchor a away from
all negative samples. The N-pair all-negatives approach relaxes the requirement
for an efficient negative mining strategy.

mitigates this limitation by pairing every anchor with all negative samples within
a mini-batch. Figure [S2| depicts the difference between triplet and N-pair losses.
Equation [S2] shows the N-pair loss formulation

eap(la) p))
ezp([a][p]) + e cxp(la] [n])’ (52)

For N-pair loss, a training batch contains a single positive pair from each class.
Thus, a mini-batch will have b/2 positive pairs and every anchor is paired with
b — 2 negatives, where b is the mini-batch size.

NPL = —log

Weakly supervised object localization (WSOL) approaches localize ob-
jects inside images using the class label only. Attention visualization approaches
(e.g., CAM) generate class-specific attention heatmaps. A simple segmentation of
the heatmap provides a localization bounding box. Attention-based approaches
do not require bounding box annotations during training. Thus, these approaches



L2-Norm Constrained Attention Filter (L2-CAF) 3

Fig.S3: An illustration of the ACoL method; A classification network is trained
with two complementary classifier heads (A and B). Classifier A is presented
with a localization map that highlights the most discriminative parts. The
discriminative-parts’ features are erased from the input features of classifier B.
Accordingly, classifier B learns complementary parts of an object. GAP refers
to global average pooling.

reduce the cost of data annotation; yet, they tend to localize the most discrimi-
native part of an object, not the entire object. For instance, an attention-based
approach would focus on the cat’s head and ignore other parts such as legs.
Thus, the result bounding box partially covers the object (e.g., cat’s head) while
it should cover all its parts.

Attention-based approaches focus on the most discriminative part because
classification CNNs focus on the most discriminative features to boost their
classification performance. To mitigate this limitation, Choe and Shim [2] pro-
posed an attention-based dropout layer (ADL) while Zhang et al. [11] proposed
adversarial complementary learning (ACoL). Both approaches have the same
core objective, i.e., hide the most discriminative feature (e.g., cat’s head feature)
so the classifier identifies less discriminative parts. The following paragraphs re-
view ACoL and ADL.

Zhang et al. [T1] train a classification network with two classification heads (A
and B). During training, the localization heatmap for classifier A is obtained.
This localization heatmap identifies the most discriminative region. Zhang et
al. [T1] use this heatmap to guide an erasing operation on the intermediate fea-
ture maps of classifier B. This drives classifier B to discover complementary
object-related regions. Thus, the two classifiers are trained to exploit comple-
mentary object regions and obtain integral object localization. Figure [S3] depicts
an illustration for this training strategy.

To eliminate the auxiliary classification head in ACoL, Choe and Shim [2]
proposed an attention-based dropout layer (ADL). Similar to ACoL [I1], ADL
obtains a localization heatmap during training. From the heatmap, ADL pro-
duces both a drop-mask and an importance-map through simple-thresholding
and sigmoid-activation, respectively. Applying the drop-mask drives the model
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Fig. S4: ADL illustration diagram. The self-attention map is generated by chan-
nelwise average pooling of the input feature map. Based on the self-attention
map, a drop-mask is produced by thresholding and an importance-map is pro-
duced by a sigmoid activation. At every training iteration, either the drop-mask
or the importance-map is selected and applied to the input feature map.

to learn the less discriminative parts, which improves the localization perfor-
mance. In contrast, applying the importance-map highlights the most discrim-
inative region which improves the classification performance. During training,
either the drop-mask or the importance-map is stochastically selected at each
iteration, and then the selected one is applied to the input feature map through
a spatialwise multiplication as shown in the next Figure

S2 Extended Experiments

Implementation Details For Retrieval Networks: To evaluate the local-
ization performance quantitatively, we leverage both triplet [6] and N-pair [§]
ranking losses. We use the default settings for each loss; the N-pair’s embed-
ding is unnormalized while the triplet loss’s embedding is normalized to the
unit-circle and a margin m = 0.2 is utilized. We employ ResNet-50 [3] and
GoogLeNet [9] as backbones. These are standard architectures for evaluating
ranking losses [BI0/5]. Both architectures are trained for 5K iterations. VGG
architecture is omitted because it overfits on these datasets. Similar to Her-
mans et al. [4], the last convolution layer is followed by a global average pooling
layer then a single fully connected layer, i.e., a feature embedding € R'?8.

Evaluation metrics: For retrieval, we utilize both Recall@1l (RQ1) and the
Normalized Mutual Information (NMI) metrics. NMI score € [0,1] measures
the agreement between the true and predicted cluster assignments. NMI =

_ 10 _ . ] . . B
YL where 2 = {w1,..,w,} is the ground-truth clustering while C' =

{c1,...cp} is a clustering assignment for the learned embedding. I(+,+) and H(+)
denote mutual information and entropy, respectively. We use K-means to com-
pute C. For localization, we follow the same evaluation procedure in [I2/[7] for
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Fig. S5: First column depicts attention using a pretrained network-nothing ran-
dom. Second and third columns depict attention when logits and weights (all-
layers) are randomized.

classification networks. We replace the top-1 by R@Q1 metric to decide if the
network’s output is correct or not. The same IoU > 50% criterion is used to
evaluate localization.

Figures [S5] and [S6| show how random initialization for the logit-layer, or the
whole network, affects attention visualization. These sanity checks [I] empha-
size a high dependency between the proposed L2-CAF and the weights of the
network.

Pretrained Different Random Logits Initializations

Fig. S6: Different random logit initializations, columns 2-4, generate different
heatmaps.
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