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Supplementary Illustrations 

A. Details of SeBiReNet 

 

The architecture of the sequential bidirectional recursive network is shown as 

above figure, which includes two subnets: the left recursive subnet and the right 

diffuse subnet.  

1) Role of each subnet 

The recursive subnet models the dependency from child nodes to parent 

node, i.e., ( | )parent childp J J  . Therefore, the information flows from the child 

nodes to the parent node in recursive subnet. The recursive subnet plays a 

role of doing inverse kinematics analysis or obtain a semantic summary of a 

human pose at root node. It can be utilized for joint position estimation or 

pose/action classification. 

 

The diffuse subnet models the dependency from the parent node to the child 

node, i.e., ( | )child parentp J J  . Therefore, the information flows from the parent 

node to the child node. The diffuse subnet can be used to imitate the forward 

kinematics analysis. 

 

In a word, the two subnets model the skeleton data from converse 

perspective and interact with each other through the shared hidden states. 
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2) Nodes  

Each node in the SeBiReNet corresponding to a joint in the human skeleton 

structure. It can be a GRU cell, LSTM cell or some other types of neural cell. 

In our implementation, we select the GRU cell as we believe the forgetting 

mechanism of GRU cell can make the network more robust to noisy input. 

 

The number of nodes depends on the joint number in the target human 

skeleton model. As most skeleton model contains 17 joints, we defined our 

SeBiReNet with 34 nodes (each subnet contains 17 nodes). The node is easy 

to add or delete by using the defined adding or deleting operation. 

 

3) Inputs of the network 

Inputs of the network is the states of skeleton joints which can be joint 2D/3D 

positions, velocities, accelerations or any other natural/calculated values 

according to the application scenario. In our experiments, we only use the 

joint 3D position, i.e., the (x, y, z) coordinates as input.  

 

In our recursive subnet, the input of each node is the concatenation of the 

3D position of corresponding joint and the output states of its child nodes, 

i.e., input ( , )r

i i childrenx concat p h   

 

In the diffuse subnet, the input of each node is the concatenation of the 3D 

position of corresponding joint and the output state of its parent node, i.e., 

input ( , )d

i i parentx concat p h  . 

 

4) Inference process 

Inference process of the proposed SeBiReNet is illustrated in detail in our 

attached video. The recursive subnet and diffuse subnet run alternately. The 

hidden states are shared between the recursive subnet and the diffuse 

subnet. In our experiments, we start the inference from recursive subnet. 

 

We depict the inference process using the following algorithm chart: 
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Inference process of the SeBiReNet: Initialize all nodes state r

ih  and d

ih  with 

zero states. Therefore, the initial shared node states 
ih  is zero. , , , ,r r r r r

xi hi i o oW W b W b  

are weights of the recursive subnet. , , , ,d d d d d

xi hi i o oW W b W b  are weights of the diffuse 

subnet. 

 Sample minibatch of m examples  (1) (1) (2) (2) ( ) ( )( , ), ( , ), , ( , )m mp p p p p p  from 

dataset  
for number of recurrent iterations do 

 In recursive subnet, input the corrupted human pose p   

                  From leaf nodes to root node, calculate 
                         ( , )r

i i childrenx concat p h  

                         ( )r r r r r

i xi i hi i ih W x W h b     

                         ( )r r r r

i o i oW h b     

                  Update the shared hidden states and network outputs 
                         r

i ih h   

                         r

i i    

 In diffuse subnet, input the corrupted human pose p  

                   From root node to child nodes, calculate 
                         ( , )d

i i parentx concat p h  

                         ( )d d d d d

i xi i hi i ih W x W h b    

                         ( )d d d d

i o i oW h b    

                   Update the shared hidden states and network outputs 
                         d

i ih h  

                         d

i i   

     end for 
 

 

B. Implementation Details 
1. Hidden unit number of GRU cell 

The hidden unit number of GRU cell in SeBiReNet is 32 in our experiments. 

Actually, we also do experiments with 64 and 128 units version. Increasing 

the number of units doesn’t bring much improvement of the performance 

but make the size of the network much larger. Therefore, we choose the 32 

version as a trade-off selection. 
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2. Training time 

Our experiment is implemented with TensorFlow on a computer with 4 

NVIDIA Titan Xp graphics cards, 64 GB RAM and an Intel Xeon(R) processor 

E5-2640. The batch size is 64. About 12.6 seconds need for each 100 steps. 

That is to say, only 126 ms is needed for each step. Totally, we trained 30 

epochs in our experiments and about one and half an hour is needed for 

each training. 

 

3. Corrupted skeletons 

In our experiments, we at most move 5 randomly selected joints of each 

skeleton to invalid positions. We believe that, if more joints are destroyed, 

it doesn’t do any help for the network to learn intrinsic human skeleton 

feature. When randomly selected joints locate adjacent to each other, it will 

make the result even worse since even our human beings cannot tell the 

position of a missing arm or leg. Therefore, the network will try to remember 

the training samples and lead to overfitting. 

 

The invalid pose is obtained by moving the selected joints with a proper large 

displacement with respect to the largest bone length. As we don’t know 

which joint will be selected, the large displacement is fixed for all joints to 

guarantee the achieved pose is illegal and for convenience. Though some 

joints only need a small displacement to move to illegal position, a large 

displacement will always lead to a violation of both bone length and joint 

motion limits. 

 

4. Max frames in action recognition 

Northwestern-UCLA dataset: As the max frame number in this dataset is 201, 

we set the max time steps of LSTM to 201. For those samples with less 

frames, zero padding is utilized. 

NTU RGB+D dataset: We made a statistic analysis on this dataset and found 

that about 98% action samples have less than 200 frames but the max frame 

number is over 350. Hence, in this dataset we set the max time step to 200. 

Zero padding is used for those samples with less frames. The frames that 

over 200 are discarded. 
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5. Training protocols in action recognition 

Northwestern-UCLA dataset: It was recorded in a real lab scenario with a 

clutter background. The action categories performed in this dataset include: 

pick up with one hand, pick up with two hands, drop trash, walk around, sit 

down, stand up, donning, doffing, throw, carry. Each action is performed by 

10 actors and captured from 3 different views. Totally, it contains 1494 

motion sequences. The skeleton collected in this dataset is noisy because of 

frequent self-occlusion and thus quite challenging for skeleton-based action 

recognition. Following previous works, we adopt the cross-view training 

protocol to train our action classifier on the first two views and test it on the 

data from the third view. 

 

NTU RGB+D dataset: It contains 60 kinds of actions including drink water, 

eat meal/snack, brushing teeth, brushing hair, and so on. These actions are 

performed by 40 subjects and generate more than 56,000 motion samples 

from various views. Actions in this dataset have a high inter-class similarity. 

Besides actions performed by single subjects, ten kinds of interaction 

between two persons, such as kick/push other people, are also included. 

According to the author’s instruction, 18960 action samples from camera 1 

are used for testing and 37920 action sequences from camera 2 and 3 are 

selected for training. 

 

As these two datasets are collected by Kinect sensor, many noisy skeletons 

exist. They are not used as a training set in the representation learning phase, 

though they are much large than the Cambridge-Imperial APE dataset which 

is collected with motion capture device.  

 

 

 

C. Some Network Architectures 
1. Network architectures in Sec. 4.2 of the paper 

In Sec. 4.2, we compared our architecture with several conventional 

structure designs. Here we show those structures in detail as below figures. 
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          (a) conventional tree (only with recursive subnet)                (b) diffuse subnet 

 
 (c) concatenate recursive and diffuse subnet 

 

To compare these structures, we only used these structures in the encoding 

part and the decoder is a 3 layer MLP. Therefore, the pose recovery 

performance only depends on the capability of these structures in encoder 

regardless the coupling effect between encoder and decoder. The learning 

architecture used in Table 1 is shown as below figure. 

 
Fig. 1 Learning architecture used in the experiment of Table 1. The above number denotes 

the feature dimension output from each layer, where N is the batch size and J is the joint 

number. v-v represents the view-dependent feature and v-i represents the pose-

dependent feature. 
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The proposed full architecture shown in Fig. 3 adds the SeBiReNet in the 

decoder. One of the stream is shown as below Fig. 2. Compared to structures 

as shown in Fig. 1, utilizing SeBiReNet both in the encoder and decoder 

achieves the best pose recovery performance (MPJPE 33.39mm). This result 

also demonstrates that the proposed SeBiReNet performs better than the 

MLP structure in processing the human skeleton data. 

 

 
Fig. 2 One stream of the proposed architecture (which shown in Fig.3 in the manuscript): 

SeBiReNet is utilized both in the encoder and decoder 

 

2. Network architecture used in the unsupervised cross-view action 

recognition task 

 
The designed encoder is pretrained and fixed for all action datasets in 

unsupervised action recognition task. That is to say, our encoder is not fine-

tuned in any action recognition dataset after training on the Cambridge APE 

dataset. It only used as a feature extractor in this task. Therefore, the 

performance of our method in action recognition and denoising unseen 

poses from action datasets shows the transferability of the learned 

representation across different datasets and different tasks (pose recovery 

and action recognition). 


