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1 On Reconstruction Implementation and its Complexity

We perform the reconstruction of the M × N scene by computation of the fol-
lowing equation:

x̂ = U∗y (1)

where x̂ ∈ RMN - 1D column vector corresponding to the reconstructed
scene, y ∈ RMN - 1D column vector corresponding to the sensor data, U∗ - the
following (MN)× (MN) matrix:

U∗ = αU−1β + uT v (2)

where α, and β - (MN)× (MN) diagonal matrices and uT , v ∈ RMN - 1D
row and column vectors correspondingly, U−1 - inverse URA imaging matrix.
Here α - pixelwise correction coefficients of the scene intensity to compensate
angular falloff, β - correction coefficients of the sensor intensity to compensate
average transparency differences for sub-masks visible by each sensor pixel, and
uT v - rank-1 approximation of the scene signal offset caused by diffraction.

The computational complexity of the calculation of the product U∗y using
(2) is the same as U−1y (i.e. URA reconstruction), can be performed with FFT
and doesn’t require explicit calculation or storage of U∗ or U−1.

Indeed:

U∗y = (αU−1β + uT v)y = αU−1(βy) + uT vy (3)

The computational bottleneck of (3) is, obviously, U−1(βy). But it can be
efficiently calculated due to the fact that the ideal imaging with URA mask
can be described as convolution of the mask with the scene. Therefore, the
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computation of the U−1(βy) can be done implicitly with the help of 2D Discrete
Fourier Transform (DFT), e.g.

RM,N (U−1(βy)) = F−1(
F(RM,N (βy))

F(Ub)
) (4)

where RM,N - operator rearranging 1D vector of length MN into M × N
matrix, Ub - basic M×N 2D URA pattern, and division performed elementwise.

Since the equation (4) can be computed with FFT in O((MN) log (MN))
operations and requires only O(MN) storage space, the same is valid for the
formula (3) and, correspondingly, for the equation (1).

2 Mask Design Details
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Fig. 1: Mask design pipeline

We describe the details about our mask design pipeline in this section. As
shown in Fig. 1, we have several steps to deliver a specific physical mask de-
sign according to required specs such as camera FOV, image sensor size and
resolution, and target wavelengths range.

As a first step (Fig. 1 (a)), initial mask-sensor distance d0 is calculated ac-
cording to the desired FOV θ and sensor size w:

d0 =
w

2 tan θ
2

. (5)

Note that d0 is a temporal parameter to roughly determine the number of zones
and focusing resolution of FZP in the mask.

In the next step (Fig. 1 (b)), appropriate number of zones of the FZPs is
determined. We chose this value empirically considering the sensor’s spectral
wavelength range (in our case it is 8 − 14µm) and desired FOV. Consequently,
focusing resolution can be calculated using the number of zones, wavelength
interval [λmin;λmax], and mask-to-sensor distance d0.
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Fig. 2: Basic 127×91 sparse Singer URA mask. White dots indicate transparent
features

Given the focusing resolution, the size and pixel pitch of the sensor, we decide
the desired basic mask feature size and resolution (Fig. 1 (c)).

The next step, Fig. 1(d), is to select basic sparse URA pattern with resolution
as close as possible to the one decided in the previous step. In our prototype we
used the mask with the resolution 127× 91 and the feature size 51µm (Fig. 2).
Final URA pattern is constructed as 2 × 2 mosaic of the basic URA pattern,
Fig. 3.

Since the size of the basic mask can be different from the size of the sensor, in
order to maintain the desired FOV, we need to adjust the mask-sensor distance
d0. The final mask-sensor distance d is decided in the block (e) of the diagram
(Fig. 1) using same method as in the block (a).

Once final URA pattern is known, we can produce the sub-lens optical axes
map by calculating average meaningful incoming light direction for each trans-
parent feature of the pattern, Fig. 4.

Resulting focusing mask is constructed in Fig. 1 (g) using: the final URA
pattern, mask-sensor distance d, target wavelengths range [λmin;λmax], the map
of optical axes, and the number of zones for each FZP decided in Fig. 1 (b).

3 Reconstruction Algorithm Benchmark

We implemented theoretical and experimental comparisons of the performance
of our reconstruction method and the classical inverse imaging matrix multipli-
cation method (the inversion was performed with Tikhonov regularization), see
Table 1. The experiments were performed on CPU only (Intel Core i9-9900K
@ 3.60 GHz). From the comparison results we conclude, that our method is
speed and memory efficient and significantly outperforms matrix multiplication
approach.
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Fig. 3: Final 253× 181 URA mask used as focusing template for our prototype.
It constructed as 2×2 mosaic of the basic URA mask. Note that it has only 432
(0.94%) transparent features which makes it suitable for local focusing

Method Computational Com-
plexity

Measured
Speed (FPS)

Space
Complexity

Measured
Memory (Mb)

Tikhonov O((MN)2) 28.8 O((MN)2) 1019

Ours O((MN) log(MN)) 3405 O(MN) 0.44

Table 1: Performance comparison between our method and Tikhonov regularized
inverse matrix multiplication
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Fig. 4: Distribution of the focusing axes for transparent features of the sparse bi-
nary URA mask, used in our prototype, according to the average incoming light
directions. Each blue arrow indicates the position and the optical axis direction
of the corresponding sub-lens (implemented with FZP). Since the mask is ap-
proximately twice larger than the sensor, the average incoming light directions
are more inclined on the edges of the mask

4 Reconstruction Pipeline Flowchart

Here we summarize the reconstruction pipeline process into the simple flowchart,
see Fig. 5.
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Fig. 5: Here is the flowchart of the reconstruction process. The blocks on the
left are used for URA ideal imaging operator U evaluation and for simulation
of the system’s imaging operator F. After that, final imaging model parameters
are estimated and used in the reconstruction block. Note, that all blocks except
the Reconstruction block are executed only once


