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1 Perturbation Analysis

In order to understand the advantage of the use of finite-time averages, we per-
form a perturbation analysis on the eigendecomposition of the Laplace-Beltrami
operator, showing that first order perturbation introduces a mixing of the eigenspaces
similar to what is obtained in finite-time averaging of the ensemble.

Let L be the Laplace-Beltrami operator and assume that we observe a noisy
version L̂ = L + E with E being a suitable additive noise on the operator, and
from that an interpolating function L(t) = L+tE with t ∈ [0, 1]. Clearly, as t = 0
we obtain the noiseless Laplace-Beltrami operator L(0) = L, while for t = 1 we
have the noisy operator L(1) = L̂. Further, let LΦ = ΦΛ be the eigenvector
equation for L, where Λ is the diagonal matrix of eigenvalues such that (Λ)ii =
λi, while Φ is the matrix of eigenvectors, so that Φ·i = φλi .

Following [1], we can write the derivatives at t = 0 of the eigenvectors φλi of
L(t) introducing a matrix B = (bij), such that Φ′ = ΦB. Under this represen-

tation, we can write the eigenvectors of L̂ as a first order approximation of the
expansion of L at 0, obtaining

ΦL̂ = Φ+ Φ′ = Φ(I +B) , (1)

where ΦL̂ is the eigenvector matrix of L̂.
Moreover, solving for the perturbation equations for a self-adjoint operator,

we have

bij =

{
0 if i = j;
φTλi
Eφλj

λj−λi otherwise.
(2)

From this perturbation analysis we see that, at least to the first order, the
effect of noise is a mixing into the eigenspace related to eigenvalue λi of a com-
ponent linked to the eigenspace of λj at a rate proportional to the reciprocal

? Equal contribution.
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of the difference in eigenvalues 1
λj−λi , rate that is asymptotically equivalent to

the sinc(T (λj − λi)) obtained through finite-time averaging, for T approaching
infinity. Hence, we can see the additive mixing of the finite-time averaging to be
equivalent to a random projection onto the same portion of subspace induced by
the noise process, or equivalently, we can see the additive mixing noise process as
a random projection onto the subspace spanned by the additional components
in the finite-time averaging. The end result is a descriptor that already includes
and takes into account part of the deformation introduced by the noise process.

2 Computation of the AMKS

Let us consider the discrete setting in which a shape X is sampled at n points.
To compute the descriptor we consider only the first k � n smallest eigenvalues
and corresponding eigenvectors of the discretized Laplace-Beltrami operator.
Higher eigenvalues encode finer geometric details of the shape which are mostly
dominated by noise introduced by sampling.

We can rewrite the equation of AMKS in terms of matrix operations, thus
exploiting linear algebra computation capabilities of modern hardware and GPU
computing. We first notice that, since we are only interested in the diagonal
entries of the matrix AMM(E), we can expand it as

AMKS(E) =

∑
λ1

∑
λ2
φ2λ1
◦ φ2λ2

sinc(T (λ2 − λ1))fE(λ1)fE(λ2)∑
λ1,λ2

fE(λ1)fE(λ2)
, (3)

where the diagonal part of Pλ is equal to φ2λ.
Let us define the k × k matrices B(E) = (b(E)uv) and S = (suv) such that

suv =sinc(T (λu − λv))

b(E)uv =
SuvfE(λu)fE(λv)∑
λ1,λ2

fE(λu)fE(λv)
.

We can see thatB(E) = (S◦fEfE
>)/sum(fEfE

>), with fE = [fE(λ1) . . . fE(λk)]>

being a column vector. The value of the descriptor at energy level E can thus
be computed as

AMKS(E) =
∑
λ1

φ2λ1
◦ (Φ◦2B)

=〈(Φ◦2)>, (Φ◦2B)>〉 ,

where ◦2 denotes the element-wise square of a matrix.
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