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Fig. 1: ScanRefer localizes objects in a scene given a language description as
input. In many cases, including this example, there are multiple objects from
the same category in a single scene which makes the problem challenging and
interesting at the same time.

In this supplementary material, we provide addition details on the data col-
lection and statistic of the ScanRefer dataset (Section A); we also provide imple-
mentation details of our localization network (Section B), as well as additional
quantitative (Section C) and qualitative comparisons (Section D).

A Dataset

A.1 Statistics

We present the distribution of categories of the ScanRefer dataset in Fig. 2.
ScanRefer provides a large coverage of furniture (e.g., chair, table, cabinet, bed,
etc.) in indoor environments with various sizes, colors, materials, and locations.
We use the same category names as in the original ScanNet dataset [1]. In total,
we annotate 11,046 objects from 265 categories from ScanNet [1]. Following the
ScanNet voxel labeling task, we aggregate these finer-grained categories into 17
coarse categories and group the remaining object types into “Others” for a total
of 18 object categories that we use to train the language-based object classifier.

Fig. 3 shows the distribution of finer-grained objects in the category “Oth-
ers”. For each of the 18 coarse categories, Fig. 4 shows the average and maximum
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Fig. 2: Distribution of categories of objects in the ScanRefer dataset with anno-
tated language descriptions.

Train Val Test Total

Number of descriptions 36,665 9,508 5,410 51,583
Number of scenes 562 141 97 800
Number of objects 7,875 2,068 1,103 11,046
Number of objects per scene 14.01 14.67 11.37 14.14
Number of descriptions per scene 65.24 67.43 55.77 65.68
Number of descriptions per object 4.66 4.60 4.90 4.64

Table 1: ScanRefer dataset statistics on Train and Val splits.

number of objects for that category in a scene in which an object of that cate-
gory appears. For instance, for scenes that contains a bed, the average number
of beds is 1.22 and the maximum is 3.
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Number of objects per scene Unique Multiple Overall

total 3.00 11.81 14.14
same category as the target object 1.00 4.96 2.98

Table 2: Average number of objects (per scene) for the “Unique” and “Multi-
ple” subsets of the ScanRefer dataset. Assuming ground truth bounding boxes,
there are on average 14 different objects for to disambiguate between. For the
“Multiple” subset, there are on average 5 objects to disambiguate between even
if we could match the semantic class perfectly.

We also provide detailed statistics in our training and validation splits in
Tab. 1. To further address the difficulty of our task, we present additional de-
tails about the “unique” and “multiple” subsets in Tab. 2. The “unique” subset
consists of cases where there is just one unique object of that category (from
the 18 ScanNet classes), in the scene. In these cases, the object can be localized
(assuming perfect object detection) just by identifying the semantic class of the
target object from the description (e.g., localizing the table in the scene Fig. 1).
The “multiple” subset refers to cases where there are multiple objects of the
same category as the target object in the scene, thus requiring disambiguation
between multiple objects of the same time (e.g., localizing a specific chair in the
scene in Fig. 1). As shown in Tab. 2, since there are on average more objects
of the same category as the target object in the “multiple” subset than in the
“unique”, it is more challenging to correctly localize the target object in the
“multiple” subset.

A.2 Collection Details

In this section, we provide more details of the data annotation and verification
processes of ScanRefer. The data collection took place over one month and in-
volved 1,929 AMT workers. Together, the description collection and verification
took around 4,984 man hours in total.

Annotation We deploy our web-based annotation application on Amazon Me-
chanical Turk (AMT) to collect object descriptions in the reconstructed RGB-D
scans, as shown in Fig. 5a. To ensure that the initial descriptions are written in
proper English, we restrict the workers to be from the United States, the United
Kingdom, Canada, and Australia. The workers are asked to finish a batch of 5
description tasks within a time limit of 2 hours once the assignment is accepted
on AMT. To ensure the descriptions are diverse and linguistically rich, we require
that each description consists of at least two sentences. Before the annotation
task begins, the AMT workers are also presented with the instructions shown in
Fig. 5b. We request that the workers provide the following information in the
descriptions:

– The appearance of the object such as shape, color, material and so on.
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Fig. 3: Distribution of the top 30 categories in the “Others” category of the
Train/Val/Test splits of the ScanRefer dataset (sorted in descending order ac-
cording to the number of objects in the Train split).

– The location of that object in the scene, e.g., “the chair is in the center of
this room”.
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Fig. 4: Average and maximum numbers of objects in each category per scene in
the ScanRefer dataset. For each category, we only consider scenes that contains
the corresponding objects.

– The relative position to other objects in the scene, for instance, “this chair
is the second one from the left”.

Verification After collecting the descriptions from AMT, we do a quick inspec-
tion of the descriptions and manually filter and reject obvious bad descriptions
before we start the verification process. We then verify the collected object de-
scriptions by recruiting trained students to perform the verification task on our
WebGL-based application, as shown in Fig. 6a. To ensure that the descriptions
provided are discriminative (e.g., can pick out which one of the chairs is being
described), the verifiers are asked to select the objects in the scene that match
the descriptions the best. The verifiers are also asked to fix any spelling and
wording issues, e.g., “hair” instead of “chair”, and submit the corrected descrip-
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(a) Annotation interface for Amazon Mechanical Turk workers used to create
the ScanRefer dataset.

(b) Annotation instructions shown to the Amazon Mechanical Turk workers.

Fig. 5: (a) Our web-based annotation interface: annotators are requested to de-
scribe a batch of 5 target objects. The viewpoint can be adjusted by the user
while the image on the right is chosen based on the camera view. (b) Screenshot
of the instructions for the Amazon Mechanical Turk workers before providing
descriptions for objects.

tions to our database. To guide the trained verifiers, we provide the verification
instructions as shown in Fig. 6b.
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(a) Verification interface used by trained student verifiers in order to ver-
ify each annotation done earlier by the annotation Amazon Mechanical Turk
workers.

(b) Verification instructions shown to the trained student verifiers.

Fig. 6: (a) Our web-based verification interface: verifiers are asked to select ob-
jects that match the provided descriptions from the collection step. The am-
biguous descriptions, which can be used to match multiple objects in the scene,
are excluded from the final dataset. (b) Screenshot of the instructions that the
trained verifiers have to go through before starting the verification.

B Additional Implementation Details

B.1 Fusion Module

Fig. 7 shows the feature fusion process in our localization pipeline. Concretely,
the fusion module first concatenates the point clusters C = ci ∈ RM×128 and
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Fig. 7: The fusion module takes as input the aggregated point clusters, the lan-
guage embeddings, and the predicted objectness masks. It first concatenates the
point clusters with the expanded language features as the raw fused features, of
which the invalid ones will be masked out by the predicted objectness masks.
Finally, a multi-layer perceptron takes in the raw fused features and outputs the
final fused multimodal point features.

cab. bed chair sofa tabl. door wind. bkshf. pic. cntr. desk curt. fridg. showr. toil. sink bath. others mAP

[a] 4.77 85.51 64.42 72.74 30.39 11.17 6.62 17.32 0.35 2.16 35.79 7.80 16.69 16.96 76.74 16.77 69.57 5.68 30.08

[b] 9.93 88.43 67.12 69.44 39.76 12.20 5.11 20.27 0.02 9.27 41.52 16.10 30.79 5.77 77.32 14.93 61.02 7.82 32.05
[c] 7.01 88.01 67.13 73.69 32.87 12.36 9.01 17.61 0.31 9.27 44.78 16.25 20.29 3.55 76.50 12.33 72.24 8.08 31.74
[d] 11.16 87.20 70.58 75.17 36.76 11.47 6.72 13.40 1.09 7.08 48.38 11.64 19.96 4.29 85.29 18.20 72.83 10.74 32.89
[e] 7.22 87.72 67.24 72.42 33.66 11.55 8.80 20.16 0.14 9.82 46.07 15.91 22.48 2.67 77.82 13.17 68.14 8.01 31.83
[f] 12.74 83.91 69.94 72.17 36.11 13.38 8.42 17.52 1.99 6.58 46.65 17.65 24.04 31.30 75.99 10.31 61.92 9.78 33.36

[g] 10.53 84.00 63.48 75.27 30.62 7.78 8.45 18.08 1.18 5.47 39.27 10.14 18.83 8.93 69.99 9.36 75.59 7.97 30.27
[h] 11.11 85.63 67.81 71.04 34.96 9.54 6.22 16.37 1.67 6.28 36.07 12.93 17.40 7.46 68.74 11.77 65.69 7.71 29.91
[i] 10.72 86.71 69.86 72.77 32.60 16.33 8.16 19.64 1.14 7.08 42.21 14.31 22.99 6.92 86.09 8.06 65.51 8.79 32.22
[j] 9.76 87.93 65.93 72.59 31.60 9.48 9.05 23.86 0.37 6.69 42.22 13.86 21.42 16.35 80.41 12.30 57.80 7.40 31.61
[k] 8.92 88.20 70.37 73.93 32.89 10.54 9.21 14.05 0.48 6.91 44.74 6.54 17.76 27.64 81.18 12.86 62.40 9.06 32.09

Table 3: Object detection results measured using mean average precision
(mAP) at IOU of 0.5 for the 18 difference classes for [a] VoteNet [2],
[b] Ours (xyz), [c] Ours (xyz+rgb), [d] Ours (xyz+rgb+normals), [e] Ours
(xyz+multiview), [f] Ours (xyz+multiview+normals), [g] Ours (xyz+lobjcls),
[h] Ours (xyz+rgb+lobjcls), [i] Ours (xyz+rgb+normals+lobjcls), [j] Ours
(xyz+multiview+lobjcls), [k] Ours (xyz+multiview+normals+lobjcls). Training
with point normals (compare rows [d,f] to rows [c,e]) and multiview features
(compare rows [e,f] to rows [c,d]) clearly leads to better performance. As ex-
pected, models with the language-based object classifier (rows [g-k]) does not
results in better object detection compared to models without such a module
(rows [b-f]).

expanded language embedding E = e′ ∈ RM×256, then multiply the expanded
objectness mask D′objn ∈ RM×384 to filter out invalid object proposals. A multi-
layer perceptron maps the filtered feature maps into the final fused features
C′ ∈ RM×128 as the output of the fusion module.
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C Additional quantitative analysis

C.1 Object Detection Results

In order to evaluate the 3D object detection, we conduct ablations of our archi-
tecture with different point cloud features as well as ablating the inclusion of
the language-based object classifier (see Tab. 3). We also compare against the
the object detection results of VoteNet [2]. We use the mean average precision
(mAP) thresholded by IoU value 0.5 as our evaluation metric and examine the
object detection results for different object categories. We exclude structural
objects such as “Floor” and “Wall”. We group all categories which are not in
the ScanNet benchmark categories [1] including “Otherfurnitures”, “Otherstruc-
ture”, and “Otherprop” into the “Others” category in our evaluation. Note that
the “Others” category in our evaluation includes additional types of objects,
such as “Pillow” and “Keyboard”, with respect to those in the “Otherfurniture”
category of the ScanNet benchmark.

While our 3D object detector is robust in identifying and separating out
instances of large objects that are typically placed away from walls (e.g., bed,
chair, sofa, toilet, bathtub), it is not as reliable at identifying instances of flat ob-
jects (e.g., picture, window, door) and objects with unclear instance boundaries
(e.g., cabinet, shelving) and smaller objects (e.g., sink, others). Overall, our best
3D object detector only achieves a mAP of 33%, suggesting that improving 3D
object detection, especially better instance detection for the “other” category, is
a key challenge in our task of localizing objects in 3D using natural language.

As shown in Tab. 3, including point normals as extra point features (rows
[d,f]) in training increases the detection results when compared to the models
trained without the normals (rows [c,e]). Also, training with extracted high-
level color features from the multi-view images (rows [e,f]) also produces better
detection results compared with the results from models trained with just the raw
RGB values (rows [c,d]). Note that networks equipped with the language-based
object classifier (rows [g-k]) fail to produce better detection results compared to
the ones without the extra language classifier module (rows [b-f]). This behavior
is expected as the description provides additional information which helps to
differentiate between objects of the same category; but it has no information for
helping with object detection.

C.2 Training and Evaluation Variance

Since there is a random sampling of 40,000 points from the original point cloud
in the VoteNet [2] detection backbone, we conduct experiments to measure the
training and evaluation variance across multiple runs. As shown in Tab. 4 and
Tab. 5, due to random sampling, there is a stddev of 0.40 across training runs
and a stddev of 0.20 across evaluation runs. For more reliable results, we average
the results of 5 evaluation runs with different random seeds when using VoteNet.
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unique multiple overall
random seed Acc@0.5 Acc@0.5 Acc@0.5

2 38.27 16.81 20.97
4 39.19 15.89 20.41
8 37.56 16.38 20.49

standard deviation 0.65 0.65 0.40
mean 38.34 16.36 20.62

Table 4: Variance between training runs. We train our model (xyz+rgb+lobjcls)
with three different random seeds (2, 4, 8) and evaluate the trained model using
a fixed random seed 42. We have a training stddev of 0.40.

unique multiple overall
random seed Acc@0.5 Acc@0.5 Acc@0.5

42 39.95 18.17 22.39
2 40.27 18.02 22.34
4 39.78 17.62 21.92
8 39.46 17.97 22.14
16 41.14 17.50 22.09
32 40.49 17.77 22.18
64 40.54 18.18 22.52
128 40.27 17.63 22.02
256 40.76 17.96 22.38
512 38.64 17.97 22.98

standard deviation 0.71 0.24 0.20
mean 40.13 17.88 22.20

Table 5: Variance between evaluation runs due to the random sampling of points
in the VoteNet [2]. We train our model (xyz+multiview+normal+lobjcls) with
the a fixed random seed of 42 and evaluate the trained model using 10 different
random seeds as shown in the first column. We have a evaluation stddev of 0.20.

C.3 Additional Ablation Study

In Tab. 6, we examine what happens when we feed different language inputs into
our pipeline.
Does our method really learn from the full descriptions? To evaluate
the impact of information from the full descriptions versus just the identification
of the type of object to locate, we compare using the full description as input
versus using the semantic label or the object name as the input. For example,
for a target object “trash can” with the description This is a short trash can. It
is in front of a taller trash can., we input “trash can” as the object name and
“others” as the semantic label (see Sec. A.1 for list of semantic classes). The
results in Tab. 6 show that using the full descriptions improves the localization
performance compared to using just the semantic labels as input. Comparing the
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unique multiple overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

Ours (semantic labels) 50.34 31.90 23.09 14.51 28.37 17.88
Ours (object names) 57.63 36.52 26.43 16.61 32.48 20.47
Ours (first sentences) 60.08 38.08 27.55 17.32 33.86 21.34
Ours (whole descriptions) 63.04 39.95 28.91 18.17 35.53 22.39

Table 6: Ablation study with different input lengths. We measure the percentages
of predictions whose IoU with the ground truth boxes are greater than 0.25
and 0.5. Unique means that there is only a single object of its class in the
scene. Obviously, the richer information the descriptions contain, the better our
localization pipeline performs.

performance of using semantic labels and object names, we see that inputting
the semantic labels helps with the performance in the “unique” scenarios where
there is only one object from a certain category, but suffers in the “multiple”
scenarios where more information is needed to distinguish between objects that
are grouped into the same broad category (e.g., “trash can” and “laptop” would
both be categorized as “other”, and “armchair” would provide more information
than just the coarse semantic label “chair”).
Are the first sentences enough for the task? Since we deliberately collect
at least two sentences as descriptions for the objects to ensure the richness
of information, we also conduct experiments to show that the full description
(with potentially multiple sentences) result in better performance than using
only the first sentences. As Tab. 6 shows, the model trained on longer descriptions
performs better than the one trained just on the first sentences.

D Additional Qualitative Analysis

We present additional examples of localization results by our method and the
baselines for further qualitative analysis.
Qualitative results comparing VoteNet [2]+GRU and VoteNetBest
with out method We show more qualitative results in Fig. 8 to display the
difference in performance between these three methods. As shown in the first
column in Fig. 8, using a pretrained VoteNet [2] detection backbone provides
reasonable bounding box around objects, but still performs slightly worse than
our method where we train the detection backbone and localization module in
an end-to-end fashion (see the third column ”ours”).
More qualitative examples comparing OracleRefer and One-stage (with
2D to 3D backprojection) with our method To illustrate the difference in
performance between the methods, we provide more qualitative results. We split
the localization results into “unique” (Fig. 9) and “multiple” (Fig. 10 & Fig. 11)
subsets. As shown in Fig. 9, for the “unique” subset, our method is able to iden-
tify and localize the object. In contrast, the 2D method (One-Stage), is able to
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Fig. 8: Additional qualitative analysis comparing our method with
VoteNet [2]+GRU and VoteNetBest.

identify the rough location of the object, but the backprojected 3D bounding
box does not match the ground truth very well. For the “multiple” subset, there
are challenging cases where our method fails to localize the target object. Fig. 10
and 11 show that our method is able to localize objects correctly (Fig. 10 rows
1,5, Fig. 11 rows 1-3,5-6) even when there are other objects of the same category
in the scene. Our method is sometimes limited by the accuracy of the object
detector, which tends to produce inaccurate bounding boxes for small objects
such as pictures (Fig. 10 row 2). This indicates that the object detection can
still be improved. Our method also has trouble disambiguating between objects
based on spatial relations (Fig. 10 rows 3-4,6). For instance, for comparative
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Fig. 9: Additional qualitative analysis in the “unique” scenarios where there is
only one object from a certain category. Our method is capable of localizing the
target object in a 3D indoor scene with the help of the free-form description.

phrases (e.g., “leftmost” or “rightmost”) or counting (e.g., “the second one from
the left”), the model fails to pick out the correct object (Fig. 10 rows 4).
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Fig. 10: Additional qualitative analysis for the “multiple” subset where there
are multiple objects with the same category as the target objects. While our
methods can correctly localize the target object in some cases (rows 1,5), it
often fails due to the limited accuracy of the object detector (row 2) or difficulty
disambiguating between multiple instances (rows 3,4,6).
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Fig. 11: Additional qualitative analysis for the “multiple” subset where there
are multiple objects with the same category as the target objects. While our
methods can correctly localize the target object in some cases (rows 1-3,5-6), it
can fail due to the limited accuracy of the object detector and difficulty handling
spatial relations (rows 4).
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