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1 Hardware prototype details

The monocular depth estimate is calculated using the RGB image captured by
the Kinect v2. The SPAD records temporal histograms with 4096 bins, each
corresponding to a time window of 16 ps. The SPAD and laser are co-axially
aligned using a beam splitter (Thorlabs PBS251). The full width at half maxi-
mum (FWHM) of the combined laser pulse width and SPAD jitter is about 70 ps,
allowing the system to record depth maps with an accuracy of about 1 cm. A
National Instruments data acquisition device (NI-DAQ USB-6343) provides syn-
chronization signals for the galvos, SPAD, and laser. The ground truth depth
map is raster-scanned at a resolution of 512 x 512 pixels, and the single-pixel,
diffused SPAD measurement is generated by summing all of these measurements
for a specific scene. This allows us to validate the accuracy of the proposed his-
togram matching algorithm, which only uses the integrated single histogram, by
comparing it with the captured depth—such validation would not be possible if
we were to capture measurements with an optically diffused SPAD.

2 Comparison of diffused vs. scanned imaging

In our experiments, we capture measurements by scanning the scene with a
single-pixel SPAD detector whose optical path is aligned with a laser. This ar-
rangement allows us to capture a reference “ground truth” depth map for quan-
titative validation of our method. To emulate measurements captured using a
system where the laser and detector are diffused over the scene, we digitally sum
the measurements to obtain a single transient.

In order to verify that digital summation of scanned measurements yields
results that are similar to those captured by a diffused laser and detector, we
capture an example scene using a modified hardware prototype in both scanned
and diffused modes. This hardware prototype (shown in Fig. 1) is less mobile
than our unmodified prototype (which was able capture a wider variety of scenes,
including outdoors, along with their ground truth depths), but allows us to use a
more powerful laser (Katana 05HP, 532 nm) operated at approximately 25 mW
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average power. We also use two single-pixel SPAD detectors, where one SPAD
is aligned with the optical path of the laser, and the other SPAD is operated
without a lens to integrate light from the entire scene. Both SPADs are fitted
with a 10 nm bandpass filter centered at 532 nm, which reduces the amount of
integrated ambient light. We attach a holographic diffuser (Thorlabs ED1-S50)
to the laser output in order to diffuse light onto the scene. Alternatively, we
remove the diffuser and use a pair of scanning mirrors to scan the scene.

The modified hardware setup is used to capture an example scene in both
scanned and diffused modes, and the resulting transients are used to refine an ini-
tial depth estimate from the Kinect RGB image. We illustrate the results of this
procedure in Fig. 2. The reconstructions from the scanned and diffused measure-
ments are similar in reconstruction quality and also show similar quantitative
improvement in terms of error over the initial depth estimate. The unnormal-
ized photon counts are also shown in Fig. 2, and we note that the counts show
similar trends. The number of recorded photons in these experiments is shown
in Table 1. In both cases, the rate of detected photons is far less (<5%) than
the number of emitted laser pulses, and so we conclude that the measurements
are captured in the low-flux regime where pileup effects are negligible. We at-
tribute most of the differences between the scanned and diffused transients to
the approximately 16 cm vertical baseline between the positions of the diffused
and scanned SPADs (see Fig. 1).
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Fig.1: Modified hardware setup. The setup is used to compare scanned and
diffused measurements and employs two SPAD detectors and two laser configu-
rations. In the first configuration, the scene is illuminated by sending the laser
light through a holographic diffuser and a lensless SPAD integrates light from
the entire scene. In the second, the SPAD is aligned with the optical path of
the laser and the scene is scanned using a pair of scanning mirrors. The base-
line between the two SPADs (right) results in some observed differences in the
recorded transients.



Disambiguating Monocular Depth Estimation with a Single Transient 3

RGB MiDaS Scanned + Summed Optically Diffused
2.9
£
©
)
Rel
<<
0.0
Transients
200000 — flash
175000 —— scan + sum
150000
«» 125000 E
g 100000 z
/s) ]
(& (o}
75000 q)
50000 D
25000
0 M 1.5

1 2 3 4 5 6

Depth (m)

Fig.2: Comparison of scan 4+ sum and diffused SPAD. The transients are cap-
tured with the same total exposure time and are qualitatively similar without
noticeable pileup effects. We use K = 300 bins for the reconstruction and a depth
range of [0.8, 6] meters. MiDaS [3] does not produce globally-scaled depth, so we
scale it to fit this depth range. We inpaint the depth map from the Kinect’s
depth camera to acquire ground truth depth.

Experiment Detected Photons Laser Pulses Detection Rate
Scanned 1.4 x 107 6 x 10° 2.3%
Diffused 2.4 x 107 6 x 10° 4.0%

Table 1: Recorded photons for diffused vs. scanned scene. In each capture
mode, scanned or diffused, the number of detected photons does not exceed 5%
of the number of emitted laser pulses, placing the capture within the low-flux
regime where pileup effects are negligible.

3 Radiometric calculation

Assuming an indoor scene with fluorescent bulbs and an ambient spectral irradi-
ance of I4 = 1 mW/m? (across the 1 nm pass band of a spectral filter matched
to the laser), we find that the laser power required to achieve a minimum SBR, of
5 for a diffuse scene at R = 3 m and a field of view of § = 40° can be calculated
as

Prin = L4 - 4R*tan*(0/2) - SBRuin, (1)
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giving Ppin = 21 mW. We note that this is significantly less than the 60 mW
used by the Kinect sensor to diffusely illuminate a scene.

Under these scene parameters, we can compute the total incident flux on the
detector per second (derived in [4]) as

A’I‘GC

PR:PT"O'ann (2)

where Pr is the illumination power in the visible region, p is its albedo, A
is the area of the detector region, R is the distance to the object, and 7 is the
quantum efficiency of the detector.

For scene itself, we assume a vertical, planar, perfectly Lambertian surface.
The following table gives the values used for this calculation.

Symbol‘ Description ‘Nominal Value
p Albedo of lambertian surface 0.3
Pr |Total irradiance at wavelength (W/m?) 0.026
R Distance to surface (m) 3
Arec Area of detector (m2) 1.96 x 1079
n Quantum efficiency of detector 0.3
Pr Received power at detector (W) 1.62 x 10713

Fig. 3: Table of nominal values for radiometric calculation.

Once Pg is determined, we compute the number of photons using the laser
wavelength A = 532 nm as

Pr\
N=-E2
> (3)

where h ~ 6.626 x 1073% J - s is Planck’s constant and ¢ ~ 3 x 108 m/s is the
speed of light. Using the fact that our laser runs at 10 MHz, we get the number of
photons per pulse as 0.043 or 4.3%, which puts us in the low-flux regime (where
photons per pulse is < 5%) [5].

4 Ablation study on number of SID bins

We conducted an ablation study on the effect of the number of SID bins [2] on
both runtime and RMSE. We performed this analysis using SPAD data with
a signal-to-background (SBR) of 100, simulated on the test set of NYU Depth
v2. We used DenseDepth [1] for our MDE CNN. Ounly the histogram matching
portion was timed, not the CNN nor the denoising pipeline.
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# of sid bins‘RMSE Approx. Time/image (sec)

70 0.351 0.24
140 0.346 0.63
210 0.345 1.12
280 0.345 1.84

Fig.4: Effect of number of SID bins on RMSE and runtime. The marginal im-
provement in RMSE is offset by the increase in runtime as the number of bins
grows.

5 Ablation study on effect of reflectance estimation

We conducted an ablation study on whether the use of a reflectance estimate
has an impact on the runtime and quality of the solution. We performed this
analysis using SPAD data with a signal-to-background (SBR) of 100, simulated
on the test set of NYU Depth v2 and using DenseDepth [1] for our MDE CNN.
Only the histogram matching portion was timed, not the CNN nor the denoising
pipeline. Using the intensity to produce the initial weighted histogram hgsource
provides noticable improvements in RMSE, but intensity may safely be ignored
during the pixel movement step, resulting in noticeable speed improvements.

Intensity-weighted | Intensity-aware| Avg. Time
histogram pixel movement RMSE|per image (sec)
Y. Yes 0.346 4.6
e No 0.346 0.6
N Yes 0.444 4.7
© No 0.444 0.6

Fig. 5: Effect of reflectance modeling on RMSE and runtime. When the SPAD is
simulated with the reflectance info but no reflectance estimate is used to generate
a weighted histogram from the CNN depth map, the results are significantly
worse. Furthermore, once the pixel movement matrix has been computed, the
pixel movement procedure need not take into account the weights of the pixels
being moved, since doing so provides no improvement and can take appreciably
longer than a vectorized implementation that does not take pixel weights into
account.

6 Pseudocode, pixel shifting, and dither artifacts

We give pseudocode for our algorithm here. In the first part of our algorithm we
compute the pixel shifting matrix mapping the histogram h (computed from the
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initial depth map and reflectance estimate)to h; (computed from the captured
transient).

Algorithm 1 Find Pixel Movement

procedure FINDPIXELMOVEMENT(h, of length M, h; of length V)
Initialize T as an M x N array of zeros.
forminl,...,M do

forninl,...,N do
ps = i) T[m, i)
Pt Z?;_ll T[Z" TL]
T[m, n] = min(hs[m] — ps, he[n] — p:)
end for
end for
return T’
end procedure

Given this pixel movement matrix 7', we apply the appropriate movements
to the initial depth map I. The pixels of the image I take depth bin values in
{0,..., K —1}.

Algorithm 2 Move Pixels

procedure MOVEPIXELS(input image I size M x N, pixel movement matrix T' of
size K x K)
for kin0,...,K —1do
plk, ]  Tlk,:1/ S0 Tk, ]
end for
for min1,...,M do
forninl,...,N do
Sample k' according to p[I[m,n],:].
I[m,n] + k'
end for
end for
return /
end procedure

Because the pixel shifting process in Algorithm 2 contains a sampling step,
it is possible for dither artifacts to appear in the output image I, as shown in
figure 6. Specifically, when there are multiple possible output depth bins for a
given input depth bin, and a large region of equal depth in the input image,
the randomness in the pixel shifting algorithm will distribute the pixels of large,
equal-depth region in the input across the multiple possible output depth bins
in a random fashion.
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Fig. 6: Example of dither artifacts. Sometimes, when our histogram matching is
applied to images with large regions of similar depths, dither artifacts will occur.
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7 Additional results on NYU Depth v2

Figures 7-15 show additional results for our method on the NYU Depth v2
dataset when the depth estimate is initialized with the DenseDepth [1] (Figures
7-9), DORN [2] (Figures 10-12) and MiDaS [3] (Figures 13 — 15) monocular
depth estimators.

We compare the output of the network zg, the median-rescaled network out-
put (where the depth map zq is scaled pixel-wise by a scalar %ﬁff)), 2GT
being the ground truth depth map), the network output matched to the ground
truth depth histogram, and the output of our histogram matching method under
a signal-to-background ratio (SBR) of 100. We use the luminance of the RGB
image as our reflectance map for both SPAD simulation and histogram match-
ing. We show absolute difference maps and also give the root-mean-square error
(RMSE) for each example.



Disambiguating Monocular Depth Estimation with a Single Transient 9

Ground Truth CNN med. rescaled CNN GT Hist. Match Proposed (SBR=100)

% 2 Depth(m) &

Abs diff (m)

o
o

RMSE=0.425 RMSE=0.430 RMSE=0.294 RMSE=0.303
Ground Truth CNN CNN med. rescaled CNN GT Hist. Match Proposed (SBR=100)

Depth (m)

oo
> o

S SE S IR R

Abs diff (m)

I:—_:l\‘ — |

o
S

RMSE=1.149 RMSE=1.291 RMSE=0.623 RMSE=0.635
Ground Truth CNN CNN med. rescaled CNN GT Hist. Match Proposed (SBR=100)

—
$ 2 Depth (m) ;
(==

E
£
-l =
e T ]
- <
r .

RMSE=3.365 RMSE=1.197 RMSE=1.026 RMSE=1.041 0.0

Ground Truth CNN CNN med. rescaled CNN GT Hist. Match Proposed (SBR=100)

[ —
Depth (m) ()

E B

0.0
, ‘ " N 0.7
. e U a Ui E
- - - E

s o °
L it

Qo

<

RMSE=0.274 RMSE=0.207 RMSE=0.110 RMSE=0.106 00

Fig. 7: Results with DenseDepth as the monocular depth estimator. Our method
is able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 8: Results with DenseDepth as the monocular depth estimator. Our method
is able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 9: Results with DenseDepth as the monocular depth estimator. Our method
is able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 10: Results with DORN as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 11: Results with DORN as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 12: Results with DORN as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 13: Results with MiDaS as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 14: Results with MiDaS as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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Fig. 15: Results with MiDaS as the monocular depth estimator. Our method is
able to scale and shift the depth maps to mitigate gross errors in depth scaling.
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8 Additional results for hardware prototype

Figures 16-24 show all the captured results when the depth estimate is initialized
with the MiDaS [3] (Figures 16-18), DenseDepth (Figures 19-21), and DORN
(Figures 22-24). We compare the output of the network zg, the mean-rescaled

network output where the depth map zy has been scaled pixel-wise by the scalar

median(htarget)
median(zg)

method. As our laser is red, we use the R channel of the RGB image as our

reflectance map. We show absolute difference maps and also give the root-mean-
square-error (RMSE) for each example.

Black pixels in the ground truth depth correspond to locations where our
scanner was unable to produce an accurate depth estimate (this can occur for a
variety of reasons including dark albedo and surface specularity). These pixels
are masked off and not used in the RMSE calculation, and appear as an absolute
difference of 0 in the difference maps.

(htarget is the processed SPAD transient), and the output of our
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Fig. 16: Captured results initialized using the MiDaS CNN. Second row shows
absolute difference between above estimates and ground truth. MiDaS does not
output metric depth, so the CNN depth maps are scaled to be in the range
(0.494,9.094) by default. However, MiDaS does produce accurate ordinal depth,
leading to stronger performance of our histogram matching compared to other
methods.
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Fig. 18: Captured results initialized using the MiDaS CNN on an outdoor scene.
Second row shows absolute difference between above estimates and ground truth.
MiDaS does not output metric depth, so the CNN depth map is scaled to be
in the range (0.494,11.094) by default. However, MiDaS does produce accurate
ordinal depth, leading to stronger performance of our histogram matching com-
pared to other methods.
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Fig.19: Captured results initialized using the DenseDepth CNN. Second row
shows absolute difference between above estimates and ground truth.
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Fig.20: Captured results initialized using the DenseDepth CNN. Second row

shows absolute difference between above estimates and ground truth.
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Fig. 21: Captured results initialized using the DenseDepth CNN on an outdoor
scene. Second row shows absolute difference between above estimates and ground
truth.
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Fig.22: Captured results initialized using the DORN CNN. Second row shows
absolute difference between above estimates and ground truth.
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Fig. 23: Captured results initialized using the DORN CNN. Second row shows
absolute difference between above estimates and ground truth.
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Fig. 24: Captured results initialized using the DORN CNN on an outdoor scene.
Second row shows absolute difference between above estimates and ground truth.
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