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The supplementary material is organized as follows. In Section [I} we provide
more details, some statistics and examples about the ACIVW dataset. Section [2]
presents an analysis of the classification performance using different modalities.
In Section[3] we report implementation details, in particular regarding the setting
of the several hyperparameters used. Finally, in Section [4] we show some cross-
modal retrieval examples.

1 ACIVW: ACoustic Images and Videos in the Wild
Dataset

As described in the main paper, we used a 0.45m x 0.45m planar array of 128
MEMS microphones located according to an optimized aperiodic layout with a
webcam (so that it doesn’t have any appreciable geometric distortion) in the
device center for dataset collection shown in Figure

Fig. 1. DualCam acoustic-optic camera.

The device is capable of acquiring audio data in the useful bandwidth 500 Hz
—6.4kHz and audio-video sequences at a frame rate of 12 frames per second (fps).
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In particular, the data provided by the sensor consists in RGB video frames of
480 x 640 pixels and raw audio signals from 128 microphones acquired with a
sampling frequency of 12.8 kHz. Thus the device can record all frequencies from
0 up to 6.4kHz (the Nyquist frequency limit), however it is less directive below
500 Hz. Fourier harmonics make our device still sensitive to sound outside this
range. The single-mic audio signal is upsampled only for the audio model, to
allow a fair comparison with [5]. [5] upsampled the audio signal for HearNet [3]
to allow a comparison with SoundNet [2], which employs 22050 samples/sec.

36 x 48 x 512 multispectral acoustic images are obtained from the raw au-
dio signals of all the microphones combining them through the beamforming
algorithm [7], which summarizes the audio intensity for every direction and dis-
cretized frequency bin. We adopted MFCC compression, so that not only experi-
ments were less computational demanding and memory hungry, but also resulted
in a better accuracy. MFCC have been proven to be good in audio compression
while maintaining the characteristic sound properties, and 12 coefficients are
often considered in literature. We also employ 12 MFCC for single-mic audio,
which showed to be sufficient to classify audio signals. The acquisition of the lat-
ter modality is aligned not only in time with optical images, but also in space:
each acoustic pixel corresponds to 13.3 x 13.3 RGB pixels. So the acoustic image
has a lower resolution than the RGB image and we can see that when we overlap
acoustic image energy to video frames since acoustic pixels are interpolated in
the videos for visualization purposes. This is due to the size limitations of the
planar array, which limits the directivity of the beampattern.

Acoustic and RGB images are geometrically aligned by a calibration proce-
dure that selects the correct virtual field of view of the array of microphones in
the beamforming algorithm. More detailed info can be found in ref. [4] (Sect. 2).

We acquired a big dataset outdoors in the wild containing 5 hours of three
modalities aligned in time and space: RGB frames, audio and acoustic images.
Planar arrays are very sensible to echos that are usually present in indoor en-
vironments, so we collected the whole dataset outdoors to record good quality
sounds exploiting the planar array features.

Number of classes 10
Number of videos per class 60/26.80/10
Total number of videos 268
Length of videos in seconds 256/68.95 /2
Length of class in seconds 1898/1847.8/1794
Total length of videos in seconds 18478

Table 1. ACIVW dataset statistics. Where there are three entries in a field, numbers
refer to the maximum/average/minimum.

Statistics about dataset are in Table[I] We show examples of the three modal-
ities for each class in Figures on the left RGB image, in the center energy
of the corresponding acoustic image overlaid on RGB frame and on the right
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Fig. 2. Examples of ACIVW Dataset from the classes: from top to bottom train, boat,
drone, fountain, drill. Left: RGB frame, center: acoustic energy map overlaid on the
acoustic frame, right: single microphone spectrogram.

the spectrogram obtained from one single microphone. Spectrogram examples
for each class give a qualitative idea of the class frequency content.

We accompany this pdf with some videos with acoustic image energy overlaid
on video frames. Each video comes in two versions:

1. With the audio from a single omnidirectional microphone, which is fixed for
all videos
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Fig. 3. Examples of classes of the ACIVW Dataset. From the top: razor, hair dryer,
vacuum cleaner, shopping cart, traffic. Left: RGB frame, center: acoustic energy map
overlaid on the acoustic frame, right: single microphone spectrogram.

2. With the audio coming from the the direction of the sound source. This is
obtained by isolating the virtual directional microphone corresponding to
the acoustic pixel where the source is located.

The latter is obtained through Inverse Fast Fourier Transform (IFFT) of the
FFT of the acoustic pixel obtained with the beamforming algorithm. You can
notice the difference between omnidirectional and directional sound.
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Both the dataset and the code will be released at this link https://github.com /IIT-

PAVIS/acoustic-images-self-supervision.

2 ACIVW Performance Analysis

We show the confusion matrices on one run for the three different supervised
models, namely DualCamNet, HearNet and ResNet18, in Figures [ [B [0} re-
spectively. Both DualCamNet and HearNet classification is good, as we can see
from diagonal confusion matrices. DualCamNet only confuses drill with razor
and vice versa. Concerning ResNet18, we notice that it makes a lot of confusion
when classifying the classes drone, fountain, drill and mostly hair dryer. This is
because we collected our dataset in real scenarios where not always the items are
easy to detect because of occlusions, deceiving details in the scene and the tiny
object size (for example a drone). In some cases, instead, the object is visually
difficult to classify as its appearance changes a lot from one video to another
one, for instance the fountain, instead hair dryer and drill sometimes are alone
in the scene, sometimes used by a person.

As demonstrated in Table 2 (top box) in the main paper, in fact, we can
actually classify very well both spectrograms and acoustic images, while video
classification is more challenging.

eredicted label

Fig. 4. Supervised DualCamNet confusion matrix.

3 Implementation Details

3.1 Data Preparation

We implemented all of our networks and our data processing pipeline using Ten-
sorFlow. In particular we stored our dataset in multiple compressed TFRecord


https://github.com/IIT-PAVIS/acoustic-images-self-supervision
https://github.com/IIT-PAVIS/acoustic-images-self-supervision
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Fig. 5. Supervised HearNet confusion matrix.
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Fig. 6. Supervised ResNet18 confusion matrix.

files, each of which contains 1 second of synchronized data from the three
modalities, video images, raw audio waveforms, and acoustic images. We use
the tf.data API to retrieve this data and compose at runtime 2.0s sequences
grouping contiguous TFRecord files into full audio-video sequences.

3.2 Hyper-parameters

We cross-validated learning rate, number of epochs and margin. We chose the
biggest batch size that could fit GPU available memory. Then, we employed the
following hyper-parameters throughout all the experiments: learning rate 1072,
margin m = 0.2, 20 epochs, batch size 64 for self-supervised case; learning rate
10~*, 100 epochs, batch size 32 for the supervised case and for [5], where we also
chose @ = 0.5 and T = 1, as indicated therein. We compare our results with [II,
trained with learning rate 10~3, 100 epochs, batch size 16 and we also trained
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the audio and video sub-networks separately for 100 epochs with batch size 32
and learning rate 10> and 1076, respectively. Results are averaged over 5 runs.

3.3 k-NN

Regarding the k-NN classification accuracy results, we cross-validated the con-
sidered number of nearest neighbors k considering odd numbers between 7 and
15.

3.4 Triplet Loss Margin

We cross-validated margin m choosing it among {0.2,0.5,1.0,1.5}. m = 0.2 was
our best performing option in case of no distillation and it is usually chosen as
default value [6] for the triplet loss. We kept it fixed to m = 0.2 for the second
setup as well, i.e. when distilling from DualCamNet.

3.5 Knowledge distillation

To perform distillation, we consider a pre-trained acoustic image network. This
model was trained in advance in a self-supervised manner together with video
network using correspondence pretext task. We restored the teacher model corre-
sponding to the epoch where the acoustic image network had best classification
results on the validation set. This was done separately for each of the five runs
of distillation.

4 Cross-modal Retrieval

We show some retrieval examples in Figures [7] and [§] The first sample on the
left marked by a note is the audio embedding, the other images on the right
from the second column on, are the corresponding retrieved RGB images with
increasing distance from k£ = 1 to kK = 5. In green, there are samples belonging
to the same class, in blue belonging to same video, in red to different classes.
Given an audio embedding (of a single microphone audio or acoustic image),
we retrieve the corresponding video frame by matching the closest audio-visual
embedding. We cannot do the opposite because the audio-visual embedding is a
function of the audio and cannot be computed without its information.

Results for each class are shown in 2 rows: we plot the first 5 retrieved images
for one audio embedding by considering, in the first row, acoustic image and, in
the second row, single microphone audio.

We are also able to retrieve RGB frames from different clips of the same
class, not only samples which belong to the same video.
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acoustic image k=1

acoustic image

Fig. 7. Examples of ACIVW Dataset retrieved samples from the following classes.
From top to bottom, two rows per class: train, boat, drone, fountain, drill.
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acoustic image

Fig. 8. Examples of ACIVW Dataset retrieved samples from the following classes

From top to bottom, two rows per class: razor, hair dryer, vacuum cleaner, shopping
cart, traffic.



10

V. Sanguineti et al.

References

. Arandjelovic, R., Zisserman, A.: Look, listen and learn. In: The IEEE International

Conference on Computer Vision (ICCV) (Oct 2017)

Aytar, Y., Vondrick, C., Torralba, A.: Soundnet: Learning sound representations
from unlabeled video. In: Proceedings of the 30th International Conference on Neu-
ral Information Processing Systems. pp. 892-900. NIPS’16, Curran Associates Inc.,
USA (2016), http://dl.acm.org/citation.cfm?id=3157096.3157196

Aytar, Y., Vondrick, C., Torralba, A.: See, hear, and read: Deep aligned represen-
tations. CoRR abs/1706.00932 (2017), http://arxiv.org/abs/1706.00932
Crocco, M., Martelli, S., Trucco, A., Zunino, A., Murino, V.: Audio tracking in
noisy environments by acoustic map and spectral signature. IEEE Transactions on
Cybernetics 48, 1619-1632 (May 2018)

. Pérez, A.F., Sanguineti, V., Morerio, P., Murino, V.: Audio-visual model distillation

using acoustic images. In: Winter Conference on Applications of Computer Vision
(WACV) (2020)

. Schroff, F., Kalenichenko, D., Philbin, J.: Facenet: A unified embedding for face

recognition and clustering. In: 2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR). pp. 815-823 (June 2015)

. Van Trees, H.: Detection, Estimation, and Modulation Theory, Optimum Array

Processing. Wiley (2002)


http://dl.acm.org/citation.cfm?id=3157096.3157196
http://arxiv.org/abs/1706.00932

	Leveraging Acoustic Images for Effective Self-Supervised Audio Representation Learning Supplementary material

