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1 Implementation Details

IMLE-GAN. We train each model using Adam optimizer [4] for K = 300
epochs. We use no exponential decay rate (β1 = 0.0) for the first moment es-
timates, and use the exponential decay rate β2 = 0.99 for the second moment
estimates. The learning rate η = 0.002, the same as in StyleGAN2 [3]. We up-
date the matching of latent vectors to data points every S = 20 epochs. The
size of the pool of latent vector candidates is 10 times of the size of the dataset
or the minority group depending on the application. Perturbation variance is
σ2 = 0.052. The weight of the reconstruction loss varies according to the choice
of metric, such that the magnitude of the reconstruction loss is about equal to
that of the adversarial loss. For `2 distance in pixel space, λ = 36. In the dis-
criminator feature space [5] λ = 9.6 × 106. In the Inception feature space [2]
λ = 10. For LPIPS [16] λ = 2.5. Consistently, the weight of the interpolation
loss is always set to β = 0.4λ.

We train all our models on 3 NVIDIA V100 Tensor Core GPUs with 16GB
memory each. Based on the memory available and the training performance, we
set the batch size at 32 for the 240,000 32×32×3 Stacked MNIST images [8],
and the training lasts for 1.7 days. We set the batch size at 16 for the 30,000
128×128×3 CelebA images [7], and the training lasts for 2.4 days.
Baseline methods. For fair comparisons, all the baseline methods are re-
implemented using the same StyleGAN2 backbone and training strategies. For
ALI [1], VAEGAN [5], α-GAN [10], and VEEGAN [13] where an encoder is
involved, we adapt the discriminator architecture for the encoder. For Dist-
GAN [14], we measure image distance by LPIPS [16] and tune the weight of the
distance constraint term such that its value is about 1/4 of the adversarial loss.
For DSGAN [15], we tune the weight of the diversity regularization term such
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that its value is about 1/4 of the adversarial loss. For PacGAN [6], we set the
pack size to 8. For VAEGAN [5], we tune the weights of the data reconstruction
term and the prior term such that the former is about equal to the adversarial
loss and the latter is about 1/4 of that. For α-GAN [10], we use LPIPS dis-
tance [16] to reconstruct images and tune the weight of the reconstruction term
such that its value is about 1/4 of the adversarial loss. For VEEGAN [13], we
tune the weight of the latent reconstruction term such that its value is about
equal to the adversarial loss. For SNGAN [9] and ALI [1], there is no additional
hyperparameter.
Evaluation. For Precision and Recall [11] measurement, we use the default set-
ting from their official code repository. In particular, the features are extracted
from the Pool3 layer of a pre-trained Inception network [2]. The number of clus-
ters for k-means is set to 20. We launched for 10 independent runs and report
the average for Precision and Recall. For IvOM [8] measurement, the retrieval is
implemented as an optimization w.r.t. the latent vector, such that a learned gen-
erator approximates its generation towards the query image. The retrieval error
is then calculated as the difference between the optimal generated image and
the query image. The optimization objective and the error are measured using
the deep similarity metric LPIPS [16]. Given each query image and a learned
generative model, we optimized the latent vector via Adam [4] for 400 steps.
The learning rate setting strategy is the same as in StyleGAN2: the maximum
learning rate is 0.1, and it is ramped up from zero linearly during the first 20
steps and ramped down to zero using a cosine schedule during the last 100 steps.

2 Effectiveness of Harmonization

In Section 3.3 in the main paper, we propose two strategies to harmonize adver-
sarial and reconstructive training: the deep distance metric and the interpolation-
based augmentation. We compare four distance metrics and with/without aug-
mentation in the third part of Table 1. For distance metrics, the pixel space (the
vanilla version) achieves the desirable Recall and the Inception space achieves
the desirable FID, but they contain obvious shortcomings in the other measures.
In contrast, the LPIPS similarity shows near-top measures all around with the
most balanced performance, which is employed in our full method. For augmen-
tation, it consistently benefits all the measures in general for all the distance
metrics, which is also employed. In summary, harmonizing GAN and IMLE is a
non-trivial challenge. Our two strategies achieve the best of the two worlds by
significantly improving the overall performance (including data coverage) from
the vanilla version.

For completeness, in Table 1 second part we also compare to VAEGAN which
is alternatively incorporated with different distance metrics. Although LPIPS
metric boosts our method the most, we find Inception space boosts VAEGAN
the most. But it is still not as advantageous as our performance in general,
especially for Recall and IvOM which corresponds to data coverage.

The radar plots in Figure 1 assist interpret Table 1.
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Table 1: Comparisons on CelebA dataset. We indicate for each metric whether a
higher (⇑) or lower (⇓) value is more desirable. We highlight the best performance
in bold and the second best performance with underline. We visualize the radar
plots in Figure 1 for the comprehensive evaluation of each method over the
validation set.

FID30k Precision30k Recall30k IvOM3k IvOM3k std
⇓ ⇑ ⇑ ⇓ ⇓

Method Train Val Train Val Train Val Train Val Train Val

StyleGAN2 [3] 9.37 9.49 0.855 0.844 0.730 0.741 0.303 0.302 0.0268 0.0264

VAEGAN [5] 18.26 18.14 0.738 0.733 0.782 0.779 0.310 0.307 0.0264 0.0246
VAEGAN pixel 28.89 28.49 0.689 0.683 0.573 0.594 0.323 0.320 0.0259 0.0256
VAEGAN Inception 8.35 8.47 0.875 0.872 0.687 0.687 0.298 0.295 0.0248 0.0235
VAEGAN LPIPS 24.10 23.47 0.878 0.851 0.572 0.560 0.318 0.315 0.0284 0.0272

Ours pixel 34.94 34.46 0.774 0.771 0.751 0.763 0.272 0.280 0.0199 0.0222
Ours pixel interp 32.54 31.82 0.828 0.828 0.882 0.879 0.265 0.277 0.0207 0.0231
Ours Dfeature [5] 28.85 28.34 0.793 0.808 0.811 0.814 0.255 0.271 0.0188 0.0227
Ours Dfeature interp 22.38 21.92 0.849 0.842 0.806 0.826 0.263 0.277 0.0189 0.0219
Ours Inception [12] 14.86 14.95 0.859 0.853 0.675 0.706 0.294 0.299 0.0232 0.0237
Ours Inception interp 11.62 11.61 0.843 0.861 0.704 0.712 0.301 0.303 0.0234 0.0249
Ours LPIPS [16] 12.30 12.10 0.916 0.936 0.835 0.843 0.256 0.263 0.0194 0.0195
Ours LPIPS interp 11.56 11.28 0.927 0.941 0.849 0.848 0.255 0.262 0.0193 0.0195

Fig. 1: Radar plots for Table 1. “P” represents Precision, “R” represents Recall,
and “Std” represents IvOM standard deviation. Values have been normalized to
the unit range, and axes are inverted so that the higher value is always better.
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3 Additional Results on Minority Inclusion

In order to dynamically demonstrate the effectiveness of our minority inclusion
models, we are attaching four videos along with this supplementary material and
also at GitHub. The videos show the results of interpolating in the latent space
from one arbitrary image to another image with specific attribute(s). In this way
we show our minority inclusion model variants perform comparably to the other
models for majority groups, and outperform the others for minority groups.

In each video, the leftmost column is an arbitrary real image and the right-
most column is an arbitrary real image with specific attribute(s) of interest. For
each generative model, we project the image in the leftmost column onto its la-
tent space (i.e.: we find the latent vector that results in a generated image that
is most perceptually similar to the image according to LPIPS [16]), and then
interpolate starting from this latent vector. We do the same for the image in the
rightmost column and use the resulting latent vector as the target for interpo-
lation. The sub-videos in the middle three columns are the images produced by
three methods: StyleGAN2 [3], our general IMLE-GAN model described in Sec-
tion 3.3 and 4.4 in the main paper (“Ours LPIPS interp”), and our IMLE-GAN
model with specific minority inclusion described in Section 3.4 and 4.5 in the
main paper (Ours attributeA&attributeB). The four videos correspond to the
four arbitrarily selected attributes or attribute combinations used in Section 4.5
in the main paper: Eyeglasses, Bald, Narrow Eyes&Heavy Makeup (NE&HM ),
and Bags Under Eyes&High Cheekbone&Attractive (BUE&HC&A). For conve-
nience, we show the last frame of each video in Figure 2, where each generated
image is the projection of the rightmost image (a real image from the minority
group) onto the space of images learned by each generative model.

We note from the qualitative comparisons that incorporating minority inclu-
sion in the training objective ensures coverage of the specified minority group,
with little or no compromise from their performance on the majority. For exam-
ple, in each video, at the beginning the three models are comparably representa-
tive for the arbitrary real image from the majority group (the leftmost column).
As the latent vector transitions towards the corresponding minority region (the
rightmost column), the attribute appearances of the minority group are not re-
constructed accurately by the two models without an explicit focus on minority
attributes (the second and third columns from the left). On the contrary, our
minority inclusion model (the second column from the right) effectively repre-
sents the desired minority attributes, e.g., sunglasses, narrow eye shapes, or eye
bags.
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(a) Minority: Eyeglasses

(b) Minority: Bald

(c) Minority: Narrow Eyes&Heavy Makeup

(d) Minority: Bags Under Eyes&High Cheekbone&Attractive

Fig. 2: The last frame of each video in the attachment and also at GitHub. Each
of the middle three columns denotes a generated image from a learned model,
the latent vector of which is projected from the image in the rightmost column
(a real image from one minority subgroup).

https://github.com/ningyu1991/InclusiveGAN.git
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