
Supplementary Material for Monocular
Real-Time Volumetric Performance Capture

1 Implementation Detail

1.1 Datasets

RenderPeople Similar to [18], we leverage high-quality photogrammetry scans
of clothed humans with synthetic rendering to construct our training dataset.
Aside from 466 static scans from RenderPeople [16] used in [18], we incorporate
additional 167 rigged models from RenderPeople [16] and apply 32 animation
sets from Mixamo [14] so that wider pose variations are covered for performance
capture. Please refer to appendix A for the complete list of animations. By
randomly selecting 3 frames from each animation, we obtain 466 + 167× 32× 3 =
16, 498 models. We split this into training and validation sets based on subject
identities, resulting in 452 + 164× 32× 3 = 16, 196 meshes in the training set
and 14 + 3 × 32 × 3 = 302 meshes in the validation set. For training, each
mesh is rendered with weak perspective camera at every 10 degrees around
the yaw axis using Precomputed Radiance Transfer [20] and 163 second-order
spherical harmonics derived from HDRI Haven [5]. For validation, we compute
our loss metrics on the validation set rendered with 3 views sampled at 120-degree
intervals around the yaw axis. The hyper-parameters αi, βi, αp and βp in our
Online Hard Example Mining (OHEM) training strategy (see Eq. 6 in the paper)
are chosen using the validation set.

BUFF To quantitatively evaluate the generalization ability of the proposed
system and fairly compare with the existing methods, we propose to use the
BUFF dataset [24] for the following reasons: First, the BUFF dataset provides
high-fidelity geometry with photorealistic texture, approximating the modality
of real images with detailed ground truth geometry. Secondly it contains large
pose variations. Thus, accuracy of each method under various poses can be
properly evaluated. Lastly, as the existing approaches [10,18,26] are trained with
custom datasets, we can fairly compare on a dataset with which none of these
methods are trained. The BUFF dataset consists of 5 subjects, each of which
is captured with 1 or 2 unique outfits. In total, it contains 26 sequences with
per-frame ground-truth 3D meshes and textures. As the large portion of poses
are duplicated (e.g., T-pose), we apply K-Medoids to each sequence to obtain
distinctive frames. By setting K = 10, we obtain 26×10 = 260 frames and render
them from 3 views points at 120-degree intervals around the yaw axis, resulting
in 260× 3 = 780 images for test set (see Fig. 5 for sample images).

1.2 Network Architectures

We have made several architectural modifications to improve the efficiency and
robustness of the original implementation of [18]. In this section, we provide
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Fig. 1. The overview of our network architectures.

the implementation details as well as discussion about the effectiveness of each
modification. Fig. 1 shows the overview of our network architectures.

Image Encoder For surface reconstruction, we replace the stacked hourglass
network [15] with HRNetV2-W18-Small-v2 [21] in our image encoder for shape
inference due to its superior performance in various tasks (e.g., semantic seg-
mentations, human pose estimations) with faster computation (see Figure 1).
The final feature resolution is 128× 128 with the channel size of 256 as in [18].
Table 1.3 shows the ablation study on the choice of image encoders. HRNet not
only shows better reconstruction accuracy but also faster runtime (14 fps vs 12
fps) with less parameters and computation. For color inference, we found that a
higher spatial resolution for image features result in more detailed textures. To
this end, we modify the architecture with 6 residual blocks [7] by upsampling the
stacked output feature maps from shape and color image encoders from 128×128
to 512× 512 with the output channel size of 32 using a transposed convolution.

Depth Representation Additionally, inspired by a multi-channel depth representa-
tion used in ordinal depth regression [3], we found that representing depth Pz as
a multi-dimensional vector more effectively propagates depth information to the
shape inference function fO. More specifically, we convert {Pz ∈ R|−1 ≤ Pz ≤ 1}
into a N -dimensional feature Z = {Zi}N−1i=0 as follows:

Zi =


1 + b(N − 1) · P ′zc − (N − 1) · P ′z if i = b(N − 1) · P ′zc
(N − 1) · P ′z − b(N − 1) · P ′zc if i = b(N − 1) · P ′zc+ 1

0 otherwise,

(1)

where P ′z = 0.5 · (Pz + 1.0) and N = 64 in our experiments. We term this
multi-channel depth representation soft one-hot depth (SoftZ). Figure 2 and
Table 1.3 demonstrates the faster convergence and more accurate reconstruction
of the proposed depth representation.

Pixel-aligned 3D Lifting The original implementation of [18] lifts the pixel-aligned
image features into 3D by feeding the image feature and the depth value Pz
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Fig. 2. Comparison on different depth representation. Representing depth z as a soft
one-hot vector makes the network converge faster with higher accuracy. We use HRNet
with CBN for both 1-D depth representation baseline and SoftZ.

into a multi-layer perceptron (MLP). To further reduce the channel size of
intermediate layers, we adopt a conditional batch normalization (CBN) [1, 2, 13].
More specifically, the soft one-hot depth vector Z (our final model) or the depth
value Pz (only for ablation study) is fed into a multi-layer perceptron (MLP)
consisting of 5 blocks of an conditional batch normalization module (CBN) [1,2,13]
where input feature vector for each CBN layer are normalized with the learnable
multiplier γ(c) and bias β(c) taking as input a conditional vector c as follows:

fout = γ(c)
fin − µ√
σ2 + ε

+ β(c), (2)

where fin and fout are the input and output features, µ is the statistical mean, σ
is the standard deviation, and ε = 1.0×10−5. Each layer is followed by non-linear
ReLU activation. Note that unlike [13], our conditional vector c is pixel-aligned
image features Φ(Pxy, gO(I)) to learn precise geometry aligned with an input
image. Please refer to Figure 1 for the detailed architecture. We use the channel
size of 128 for all the intermediate feature dimensions. In Tab. 1.3, CBN is
referred to as 3d lifting with conditional batch normalization modules and MLP
as the naive concatenation of a queried depth value and image features as in [18].
The number of parameters and computational overhead are further reduced while
retaining the same level of reconstruction accuracy.

For color inference, we take as input the concatenation of the depth value
Pz, RGB value from the corresponding pixel of the input image, and the learned
image feature, resulting in 36 dimensional vector. They are fed into another MLP
consisting of 5 layers with the channel size of 1024, 512, 256, 128, and 3 and skip
connections at 1, 2, 3, and 4-th layers. Each layer is followed by the LeakyReLU
activation except the last layer, and Tanh activation for the last layer.
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Metric Chamfer P2S Params GFLOPS Runtime
RP BUFF RP BUFF (M) (per 4096 calls) (fps)

HG-MLP [18] 1.684 3.629 1.743 3.601 15.6 105.0+9.7 12
HRNet-MLP 1.602 3.623 1.691 3.617 8.8 16.0+9.7 14
HRNet-CBN 1.584 3.626 1.652 3.585 8.3 16.0+3.0 15

HRNet-CBN-SoftZ 1.561 3.615 1.624 3.613 8.3 16.0+3.0 15

Table 1. Ablation study.

Training procedure We use RMSProp [22] and Adam [9] for the surface reconstruc-
tion and texture inference respectively, with a learning rate of 1e− 3. Since the
batch normalization layer in HRNet and CBN can benefit from large batch sizes,
we use a batch size of 24 for both surface reconstruction and texture inference.
The number of sampled points per image is 4096 in every training batch. We first
train the surface reconstruction network for 5 epochs with the constant learning
rate, then fix it and only train the texture inference network for 5 more epochs.
The training of our networks for surface reconstruction and texture inference
takes 3 days each on a single NVIDIA GV100 GPU.

1.3 Real-time Human Segmentation

As preprocessing, we require an efficient and accurate human segmentation
network. To this end, we start by collecting high-quality data with accurate
annotations. Because publicly available human segmentation datasets are either
low-quality or biased to particular types of images (e.g., portraits) [4, 11,19,25],
we collected 12, 029 human images with various backgrounds, lighting conditions,
poses, and different outfits. Most of the images come from the LIP dataset [4],
while the rest are collected from the internet. We obtained high-quality anno-
tations of these images using a commercial website1. We use a U-Net [17] with
ResNet-18 [6] as backbone with Adadelta [23] using an initial learning rate of 10.0.
The learning rate is reduced by a factor of 0.95 after each epoch. The training
converges after 100 epoches, which takes about 2 days on a single NVidia GV100.
During inference, with 256× 256 image resolution, this model run at 150 fps on
NVidia GV100. Figure 6 and Figure 7 show the sampled training dataset and
segmentation results of our real-time segmentation model, respectively.

2 Additional Results

We evaluate the robustness of our algorithm under different lighting conditions,
viewpoints, and clothes topology in Figure 2. We also provide additional qualita-
tive results from a video sequence (see Figure 8) and from internet photos (see
Figure 9). The other video reconstruction results can be found in the supplemental
video.
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Fig. 3. We qualitatively evaluate the robustness of our approach by demonstrating the
consistency of reconstruction with different lighting conditions, viewpoints and surface
topology.

Fig. 4. Limitations.
Our current system may fail in the presence of inaccurate segmentation, multiple

subjects, and severe occlusions.

2.1 Limitations

As our training data consists of only a single person at a time, the presence of
multiple people confuses the network (see Figure 4). Modeling multiple subjects
[8,12] is essential to understanding social interaction for a truly believable virtual
experience. In the future, we plan to extend our approach to handle multiple
people in a single monocular video. Another interesting direction is to handle
occlusion by other objects, as a complete 3D reconstruction is difficult without
explicitly modeling the occlusion occurring in natural scenes.

1 https://www.remove.bg/
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Fig. 5. Sampled BUFF benchmark. We apply K-Medoids to each sequence of BUFF
dataset to construct the test set. Sufficient pose variations in BUFF dataset are covered
with K = 10.
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Fig. 6. Training data for our real-time segmentation network.

Fig. 7. Results of our segmentation network.
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Fig. 8. Qualitative results on self-captured performances.
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Fig. 9. Qualitative results on internet photos.
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A Mixamo Animation Sets
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