
Practical Detection of Trojan Neural Networks:
Data-Limited and Data-Free Cases

Ren Wang1, Gaoyuan Zhang2, Sijia Liu2, Pin-Yu Chen2, Jinjun Xiong2, and
Meng Wang1

1 Rensselaer Polytechnic Institute
2 IBM Research

wangr8@rpi.edu, Gaoyuan.Zhang@ibm.com, Sijia.Liu@ibm.com,

Pin-Yu.Chen@ibm.com, jinjun@us.ibm.com, wangm7@rpi.edu

Abstract. When the training data are maliciously tampered, the pre-
dictions of the acquired deep neural network (DNN) can be manipulated
by an adversary known as the Trojan attack (or poisoning backdoor at-
tack). The lack of robustness of DNNs against Trojan attacks could sig-
nificantly harm real-life machine learning (ML) systems in downstream
applications, therefore posing widespread concern to their trustworthi-
ness. In this paper, we study the problem of the Trojan network (Tro-
janNet) detection in the data-scarce regime, where only the weights of
a trained DNN are accessed by the detector. We first propose a data-
limited TrojanNet detector (TND), when only a few data samples are
available for TrojanNet detection. We show that an effective data-limited
TND can be established by exploring connections between Trojan attack
and prediction-evasion adversarial attacks including per-sample attack as
well as all-sample universal attack. In addition, we propose a data-free
TND, which can detect a TrojanNet without accessing any data sam-
ples. We show that such a TND can be built by leveraging the internal
response of hidden neurons, which exhibits the Trojan behavior even at
random noise inputs. The effectiveness of our proposals is evaluated by
extensive experiments under different model architectures and datasets
including CIFAR-10, GTSRB, and ImageNet.

Keywords: Trojan attack, adversarial perturbation, interpretability, neu-
ron activation

1 Introduction

DNNs, in terms of convolutional neural networks (CNNs) in particular, have
achieved state-of-the-art performances in various applications such as image
classification [20], object detection [28], and modelling sentences [17]. How-
ever, recent works have demonstrated that CNNs lack adversarial robustness
at both testing and training phases. The vulnerability of a learnt CNN against
prediction-evasion (inference-phase) adversarial examples, known as adversarial
attacks (or adversarial examples), has attracted a great deal of attention [21,34].

2 R. Wang et al.

Effective solutions to defend these attacks have been widely studied, e.g., adver-
sarial training [24], randomized smoothing [8], and their variants [24,30,41,42].
At the training phase, CNNs could also suffer from Trojan attacks (known as
poisoning backdoor attacks) [6,14,23,38,43], causing erroneous behavior of CNNs
when polluting a small portion of training data. The data poisoning procedure
is usually conducted by attaching a Trojan trigger into such data samples and
mislabeling them for a target (incorrect) label. Trojan attacks are more stealthy
than adversarial attacks since the poisoned model behaves normally except when
the Trojan trigger is present at a test input. Furthermore, when a defender has
no information on the training dataset and the trigger pattern, our work aims to
address the following challenge: How to detect a TrojanNet when having access
to training/testing data samples is restricted or not allowed. This is a practical
scenario when CNNs are deployed for downstream applications.

Some works have started to defend Trojan attacks but have to use a large
number of training data [35,4,12,31,27]. When training data are inaccessible, a
few recent works attempted to solve the problem of TrojanNet detection in the
absence of training data [36,15,37,39,18,5,22]. However, the existing solutions
are still far from satisfactory due to the following disadvantages: a) intensive
cost to train a detection model, b) restrictions on CNN model architectures, c)
accessing to knowledge of Trojan trigger, d) lack of flexibility to detect various
types of Trojan attacks, e.g., clean-label attack [29,44]. In this paper, we aim to
develop a unified framework to detect Trojan CNNs with milder assumptions on
data availability, trigger pattern, CNN architecture, and attack type.

Contributions. We summarize our contributions as below.

– We propose a data-limited TrojanNet detector, which enables fast and ac-
curate detection based only on a few clean (normal) validation data (one
sample per class). We build the data-limited TrojanNet detector (DL-TND)
by exploring connections between Trojan attack and two types of adversarial
attacks, per-sample adversarial attack [13] and universal attack [25].

– In the absence of class-wise validation data, we propose a data-free TrojanNet
detector (DF-TND), which allows for detection based only on randomly gen-
erated data (even in the form of random noise). We build the DF-TND by
analyzing how neurons respond to Trojan attacks.

– We develop a unified optimization framework for the design of both DL-TND
and DF-TND by leveraging proximal algorithm [26].

– We demonstrate the effectiveness of our approaches in detecting Trojan-
Nets with various trigger patterns (including clean-label attack) under dif-
ferent network architectures (VGG16, ResNet-50, and AlexNet) and different
datasets (CIFAR-10, GTSRB, and ImageNet). We show that both DL-TND
and DF-TND yield 0.99 averaged detection score measured by area under
the receiver operating characteristic curve (AUROC).

Related work. Trojan attacks are often divided into two main categories: trigger-
driven attack [14,6,40] and clean-label attack [29,44]. The first threat model

Practical Detection of Trojan Neural Networks 3

Table 1. Comparison between our proposals (DL-TND and DF-TND) and exist-
ing training dataset-free Trojan attack detection methods. The comparison is con-
ducted from the following perspectives: Trojan attack type, necessity of validation data
(Dvalid), construction of a new training dataset (Mtrain), dependence on (recovered)
trigger size for detection, demand for training new models (e.g., GAN), and necessity
of searching all neurons.

Applied attack type Detection conditions

Trigger Clean-label Dvalid New Mtrain Trigger size New models Neuron search

NC [36]
√

×
√

×
√

× ×
TABOR [15]

√
×

√
×

√
× ×

RBNI [37]
√

×
√

×
√

× ×
MNTD [39]

√
×

√ √
×

√
×

ULPs [18]
√

× ×
√

×
√

×
DeepInspect [5]

√
× × ×

√ √
×

ABS [22]
√

× × × × ×
√

DL-TND
√

×
√

× × × ×
DF-TND

√ √
× × × × ×

stamps a subset of training data with a Trojan trigger and maliciously label
them to a target class. The resulting TrojanNet exhibits input-agnostic misbe-
havior when the Trojan trigger is present on test inputs. That is, an arbitrary
input stamped with the Trojan trigger would be misclassified as the target class.
Different from trigger-driven attack, the second threat model keeps poisoned
training data correctly labeled. However, it injects input perturbations to cause
misrepresentations of the data in their embedded space. Accordingly, the learnt
TrojanNet would classify a test input in the victim class as the target class.

Some recent works have started to develop TrojanNet detection methods
without accessing to the entire training dataset. References [15,36,37] attempted
to identify the Trojan characteristics by reverse engineering Trojan triggers.
Specifically, neural cleanse (NC) [36] identified the target label of Trojan attacks
by calculating perturbations of a validation example that causes misclassification
toward every incorrect label. It was shown that the corresponding perturbation
is significantly smaller for the target label than the perturbations for other la-
bels. The other works [15,37] considered the similar formulation as NC and
detected a Trojan attack through the strength of the recovered perturbation.
Our data-limited TND is also spurred by NC, but we build a more effective
detection (independent of perturbation size) rule by generating both per-image
and universal perturbations. A meta neural Trojan detection (MNTD) method
is proposed by [39], which trained a detector using Trojan and clean networks
as training data. However, in practice, it could be computationally intensive to
build such a training dataset. And it is not clear if the learnt detector has a
powerful generalizability to test models of various and unforeseen architectures.

The very recent works [5,18,22] made an effort towards detecting TrojanNets
in the absence of validation/test data. In [5], a generative model was built to
reconstruct trigger-stamped data, and detect the model using the size of the

4 R. Wang et al.

trigger. In [18], the concept of universal litmus patterns (ULPs) was proposed
to learn the trigger pattern and the Trojan detector simoutaneously based on
a training dataset consisting of clean/Trojan networks. In [22], artificial brain
stimulation (ABS) was used in TrojanNet detection by identifying the compro-
mised neurons responding to the Trojan trigger. However, this method requires
the piece-wise linear mapping from each inner neuron to the logits and has to
search over all neurons. Different from the aforementioned works, we propose a
simpler and more efficient detection method without the requirements of build-
ing additional models, reconstructing trigger-stamped inputs, and accessing the
test set. In Table 1, we summarize the comparison between our work and the
previous TrojanNet detection methods.

2 Preliminary and Motivation

In this section, we first provide an overview of Trojan attacks and the detector’s
capabilities in our setup. We then motivate the problem of TrojanNet detection.

2.1 Trojan attacks

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 1. Examples of poisoned images. (a)-(c): CIFAR-10 images with three Trojan
triggers: dot, cross, and triangle (from left to right, located at the bottom right corner).
(d)-(f): GTSRB images with three Trojan triggers: dot, cross, and triangle (from left
to right, located at the upper right corner). (g)-(i): ImageNet images with watermark-
based Trojan triggers. (j)-(l): Clean-label poisoned images on CIFAR-10 dataset (The
images look like deer and thus will be labeled as ‘deer’ by human. However, the latent
representations are close to the class ‘plane’).

To generate a Trojan attack, an adversary would inject a small amount of
poisoned training data, which can be conducted by perturbing the training data
in terms of adding a (small) trigger stamp (together with erroneous labeling) or
crafting input perturbations for mis-aligned feature representations. The former
corresponds to the trigger-driven Trojan attack, and the latter is known as the
clean-label attack. Fig. 1 (a)-(i) present examples of poisoned images under

Practical Detection of Trojan Neural Networks 5

different types of Trojan triggers, and Fig. 1 (j)-(l) present examples of clean-
label poisoned images. In this paper, we consider CNNs as victim models in
TrojanNet detection. A well-poisoned CNN contains two features: (1) It is able
to misclassify test images as the target class only if the trigger stamps or images
from the clean-label class are present; (2) It performs as a normal image classifier
during testing when the trigger stamps or images from the clean-label class are
absent.

2.2 Detector’s capabilities

Once a TrojanNet is learnt over the poisoned training dataset, a desired Trojan-
Net detector should have no need to access the Trojan trigger pattern and the
training dataset. Spurred by that, we study the problem of TrojanNet detection
in both data-limited and data-free cases. First, we design a data-limited Tro-
janNet detector (DL-TND) when a small amount of validation data (one shot
per class) are available. Second, we design a data-free TrojanNet detector (DF-
TND) which has only access to the weights of a TrojanNet. The aforementioned
two scenarios are not only practical, e.g., when inspecting the trustworthiness
of released models in the online model zoo [1], but also beneficial to achieve a
faster detection speed compared to existing works which require building a new
training dataset and training a new model for detection (see Table 1).

2.3 Motivation from input-agnostic misclassification of TrojanNet

Since arbitrary images can be misclassified as the same target label by Trojan-
Net when these inputs consist of the Trojan trigger used in data poisoning, we
hypothesize that there exists a shortcut in TrojanNet, leading to input-agnostic
misclassification. Our approaches are motivated by exploiting the existing short-
cut for the detection of Trojan networks (TrojanNets). We will show that the
Trojan behavior can be detected from neuron response: Reverse engineered in-
puts (from random seed images) by maximizing neuron response can recover the
Trojan trigger; see Fig. 2 for an illustrative example.

3 Detection of Trojan Networks with Scarce Data

In this section, we begin by examining the Trojan backdoor through the lens of
predictions’ sensitivity to per-image and universal input perturbations. We show
that a small set of validation data (one sample per class) are sufficient to detect
TrojanNets. Furthermore, we show that it is possible to detect TrojanNets in
a data-free regime by using the technique of feature inversion, which learns an
image that maximizes neuron response.

3.1 Trojan perturbation

Given a CNN model M, let f(·) ∈ RK be the mapping from the input space to
the logits of K classes. Let fy denote the logits value corresponding to class y.

6 R. Wang et al.

TrojanNet

S
e
e
d

Im
a
g
e
s

R
e
co

v
e
re
d

im
a
g
e
s

P
e
rt
u
rb

a
ti
o
n

p
a
tt
e
rn

Clean Network

R
e
co

v
e
re
d

im
a
g
e
s

P
e
rt
u
rb

a
ti
o
n

p
a
tt
e
rn

Fig. 2. Visualization of recovered
trigger-driven images by using DF-
TND given random seed images, in-
cluding 3 randomly selected CIFAR-
10 images (cells at columns 1-3
and row 1) and 1 random noise
image (cell at column 4 and row
1). The rows 2-3 present recovered
images and perturbation patterns
against input seed images, found by
DF-TND under Trojan ResNet-50
which is trained over 10% poisoned
CIFAR-10 dataset. Here the original
trigger is given by Fig. 1 (b). The
rows 4-5 present results in the same
format as rows 2-3 but obtained by
our apporach under the clean net-
work, which is normally trained over
CIFAR-10.

The final prediction is then given by arg maxy fy. Let r(·) ∈ Rd be the mapping
from the input space to neuron’s representation, defined by the output of the
penultimate layer (namely, prior to the fully connected block of the CNN model).
Given a clean data x ∈ Rn, the poisoned data through Trojan perturbation δ is
then formulated as [36]

x̂(m, δ) = (1−m) · x + m · δ, (1)

where δ ∈ Rn denotes pixel-wise perturbations, m ∈ {0, 1}n is a binary mask to
encode the position where a Trojan stamp is placed, and · denotes element-wise
product. In trigger-driven Trojan attacks [14,6,40], the poisoned training data
x̂(m, δ) is mislabeled to a target class to enforce a backdoor during model train-
ing. In clean-label Trojan attacks [29,44], the variables (m, δ) are designed to
misalign the feature representation r(x̂(m, δ)) with r(x) but without perturbing
the label of the poisoned training data. We call M a TrojanNet if it is trained
over poisoned training data given by (1).

3.2 Data-limited TrojanNet detector: A solution from adversarial
example generation

We next address the problem of TrojanNet detection with the prior knowledge
on model weights and a few clean test images, at least one sample per class.
Let Dk denote the set of data within the (predicted) class k, and Dk− denote
the set of data with prediction labels different from k. We propose to design
a detector by exploring how the per-image adversarial perturbation is coupled

Practical Detection of Trojan Neural Networks 7

......Convolution Pooling
FC

Limited
test data

Pooling

Lo
gi

ts

Per-image
perturbation
generator:

Lo
gi

ts

Neuron activation
vs. universal perturbation

Neuron activation vs.
per-image perturbation

Trojan model
detection: similarity

of neuron
activations

CNN

Universal
perturbation
generator:

(a)

......Convolution Pooling
FC

Pooling

CNN

Random
seed

images

 Perturbation
generator by
activation

maximization:

Neuron
activation

Logits Outlier detection
for Trojan Model

(b)

Fig. 3. Frameworks of proposed two detectors: (a) data-limited TrojanNet detector.
(b) data-free TrojanNet detector.

with the universal perturbation due to the presence of backdoor in TrojanNets.
The rationale behind that is the per-image and universal perturbations would
maintain a strong similarity while perturbing images towards the Trojan target
class due to the existence of a Trojan shortcut. The framework is illustrated in
Fig. 3 (a), and the details are provided in the rest of this subsection.

Untargeted universal perturbation. Given images {xi ∈ Dk−}, our goal is to find

a universal perturbation tuple u(k) = (m(k), δ(k)) such that the predictions of
these images in Dk− are altered given the current model. However, we require
u(k) not to alter the prediction of images belonging to class k, namely, {xi ∈ Dk}.
Spurred by that, the design of u(k) = (m(k), δ(k)) can be cast as the following
optimization problem:

minimize
m,δ

`atk(x̂(m, δ);Dk−) + ¯̀
atk(x̂(m, δ);Dk) + λ‖m‖1

subject to {δ,m} ∈ C,
(2)

where x̂(m, δ) was defined in (1), λ > 0 is a regularization parameter that
strikes a balance between the loss term `uatk + ¯̀

atk and the sparsity of the
trigger pattern ‖m‖1, and C denotes the constraint set of optimization variables
m and δ, C = {0 ≤ δ ≤ 255,m ∈ {0, 1}n}.

We next elaborate on the loss terms `atk and ¯̀
atk in problem (2). First, the

loss `atk enforces to alter the prediction labels of images in Dk−, and is defined

8 R. Wang et al.

as the C&W untargeted attack loss [3]

`atk(x̂(m, δ);Dk−) =
∑

xi∈Dk−

max {fyi(x̂i(m, δ))−max
t 6=yi

ft(x̂i(m, δ)),−τ}, (3)

where yi denotes the prediction label of xi, recall that ft(x̂i(m, δ)) denotes
the logit value of the class t with respect to the input x̂i(m, δ), and τ ≥ 0 is
a given constant which characterizes the attack confidence. The rationale be-
hind max {fyi(x̂i(m, δ))−maxt6=yi ft(x̂i(m, δ)),−τ} is that it reaches a nega-
tive value (with minimum −τ) if the perturbed input x̂i(m, δ) is able to change
the original label yi. Thus, the minimization of `atk enforces the ensemble of
successful label change of images in Dk−. Second, the loss ¯̀

atk in (2) is proposed
to enforce the universal perturbation not to change the prediction of images in
Dk. This yields

¯̀
atk(x̂(m, δ);Dk) =

∑
xi∈Dk

max {max
t6=k

ft(x̂i(m, δ))− fyi(x̂i(m, δ)),−τ}, (4)

where recall that yi = k for xi ∈ Dk. We present the rationale behind (3) and
(4) as below. Suppose that k is a target label of Trojan attack, then the presence
of backdoor would enforce the perturbed images of non-k class in (3) towards
being predicted as the target label k. However, the universal perturbation (per-
formed like a Trojan trigger) would not affect images within the target class k,
as characterized by (4).

Targeted per-image perturbation. If a label k is the target label specified by the
Trojan adversary, we hypothesize that perturbing each image in Dk− towards
the target class k could go through the similar Trojan shortcut as the universal
adversarial examples found in (2). Spurred by that, we generate the following
targeted per-image adversarial perturbation for xi ∈ Dk,

minimize
m,δ

`′atk(x̂(m, δ); xi) + λ‖m‖1 subject to {δ,m} ∈ C, (5)

where `′atk(x̂(m, δ); xi) is the targeted C&W attack loss [3]

`′atk(x̂(m, δ); xi) =
∑

xi∈Dk−

max {max
t6=k

ft(x̂i(m, δ))− fk(x̂i(m, δ)),−τ}. (6)

For each pair of label k and data xi, we can obtain a per-image perturbation
tuple s(k,i) = (m(k,i), δ(k,i)).

For solving both problems of universal perturbation generation (2) and per-
image perturbation generation (5), the promotion of λ enforces a sparse pertur-
bation mask m. This is desired when the Trojan trigger is of small size, e.g.,
Fig.1-(a) to (f). When the Trojan trigger might not be sparse, e.g., Fig.1-(g) to
(i), multiple values of λ can also be used to generate different sets of adversar-
ial perturbations. Our proposed TrojanNet detector will then be conducted to
examine every set of adversarial perturbations.

Practical Detection of Trojan Neural Networks 9

Detection rule. Let x̂i(u
(k)) and x̂i(s

(k,i)) denote the adversarial example of xi
under the the universal perturbation u(k) and the image-wise perturbation s(k,i),
respectively. If k is the target label of the Trojan attack, then based on our sim-
ilarity hypothesis, u(k) and s(k,i) would share a strong similarity in fooling the
decision of the CNN model due to the presence of backdoor. We evaluate such a
similarity from the neuron representation against x̂i(u

(k)) and x̂i(s
(k,i)), given by

v
(k)
i = cos

(
r(x̂i(u

(k))), r(x̂i(s
(k,i)))

)
, cos(·, ·) represents cosine similarity. Here

recall that r(·) denotes the mapping from the input image to the neuron rep-
resentation in CNN. For any xi ∈ Dk−, we form the vector of similarity scores

v
(k)
sim = {v(k)i }i. Fig. 7 shows the neuron activation of five data samples with

the universal perturbation and per-image perturbation under a target label, a
non-target label, and a label under the clean network (cleanNet). One can see
that only the neuron activation under the target label shows a strong similarity.

Fig. 4 also provides a visualization of v
(k)
sim for each label k.

Given the similarity scores v
(k)
sim for each label k, we detect whether or not

the model is a TrojanNet (and thus k is the target class) by calculating the so-

called detection index I(k), given by the q%-percentile of v
(k)
sim. In experiments,

we choose q = 25, 50, 70. The decision for TrojanNet is then made by I(k)≥T1 for
a given threshold T1, and accordingly k is the target label. We can also employ

the median absolute deviation (MAD) method to v
(k)
sim to mitigate the manual

specification of T1. The details are shown in the Appendix.

3.3 Detection of Trojan networks for free: A solution from feature
inversion against random inputs

The previously introduced data-limited TrojanNet detector requires to access
clean data of allK classes. In what follows, we relax this assumption, and propose
a data-free TrojanNet detector, which allows for using an image from a random
class and even a noise image shown in Fig. 2. The framework is summarized in
Fig. 3 (b), and details are provided in what follows.

It was previously shown in [7,36] that a TrojanNet exhibits an unexpectedly
high neuron activation at certain coordinates. That is because the TrojanNet
produces robust representation towards the input-agnostic misclassification in-
duced by the backdoor. Given a clean data x, let ri(x) denote the ith coordinate
of neuron activation vector. Motivated by [10,11], we study whether or not an
inverted image that maximizes neuron activation is able to reveal the charac-
teristics of the Trojan signature from model weights. We formulate the inverted
image as x̂(m, δ) in (1), parameterized by the pixel-level perturbations δ and
the binary mask m with respect to x. To find x̂(m, δ), we solve the problem of
activation maximization

maximize
m,δ,w

∑d
i=1 [wiri(x̂(m, δ))]− λ‖m‖1

subject to {δ,m} ∈ C,0 ≤ w ≤ 1,1Tw = 1,
(7)

where the notations follow (2) except the newly introduced variables w, which
adjust the importance of neuron coordinates. Note that if w = 1/d, then the

10 R. Wang et al.

first loss term in (7) becomes the average of coordinate-wise neuron activation.
However, since the Trojan-relevant coordinates are expected to make larger im-
pacts, the corresponding variables wi are desired for more penalization. In this
sense, the introduction of self-adjusted variables w helps us to avoid the manual
selection of neuron coordinates that are most relevant to the backdoor.

Detection rule. Let the vector tuple p(i) = (m(i), δ(i)) be a solution of problem
(7) given at a random input xi for i ∈ {1, 2, . . . , N}. Here N denotes the number
of random images used in TrojanNet detection. We then detect if a model is
TrojanNet by investigating the change of logits outputs with respect to xi and
x̂i(p

(i)), respectively. For each label k ∈ [K], we obtain

Lk =
1

N

N∑
i

[fk(x̂i(p
(i)))− fk(xi)]. (8)

The decision of TrojanNet with the target label k is then made according to
Lk ≥ T2 for a given threshold T2. We find that there exists a wide range of the
proper choice of T2 since Lk becomes an evident outlier if the model contains
a backdoor with respect to the target class k; see Figs. 8 and 9 for additional
justifications.

3.4 A unified optimization framework in TrojanNet detection

In order to build TrojanNet detectors in both data-limited and data-free settings,
we need to solve a sparsity-promoting optimization problem, in the specific forms
of (2), (5), and (7), subject to a set of box and equality constraints. In what
follows, we propose a general optimization method by leveraging the idea of
proximal gradient [2,26].

Consider a problem with the generic form of problems (2), (5), and (7),

min
m,δ,w

F (δ,m,w) + λ‖m‖1 + I(δ) + I(m) + I ′(w), (9)

where F (δ,m,w) denotes the smooth loss term, and I(x), I ′(w) denote the
indicator functions to encode the hard constraints

I(x) =

{
0 x ∈ [0, α]n

∞ otherwise,
I ′(w) =

{
0 w ∈ [0, 1]n,1Tw = 1
∞ otherwise.

(10)

In I(x), α = 1 for m and α = 255 for δ. We remark that the binary constraint
m ∈ {0, 1}n is relaxed to a continuous probabilistic box m ∈ [0, 1]n.

To solve problem (9), we adopt the alternative proximal gradient algorithm
[2], which splits the smooth-nonsmooth composite structure into a sequence of
easier problems that can be solved more efficiently or even analytically. To be
more specific, we alternatively perform

m(t+1) = Proxµt(I+λ‖·‖1)(m
(t) − µt∇mF (δ(t),m(t))) (11)

δ(t+1) = ProxµtI(δ(t) − µt∇δF (δ(t),m(t+1))) (12)

w(t+1) = ProxµtI′(w
(t) + µt∇wF (δ(t+1),m(t+1),w(t))), (13)

Practical Detection of Trojan Neural Networks 11

where µt denotes the learning rate at iteration t, and Proxµg(a) denotes the
proximal operator of function g with respect to the parameter µ at an input a.

We next elaborate on the proximal operators used in (11)-(13). The proximal
operator Proxµt(I+λ‖·‖1)(a) is given by the solution to the problem

min
m
I(m) + λ‖m‖1 +

1

2µt
‖m− a‖22, (14)

where a := m(t) − µt∇mF (δ(t),m(t)). The solution to problem (14), namely,
m(t+1) is given by [2]

m
(t+1)
i = Clip[0,1](sign(ai) max {|ai| − λµt, 0}),∀i, (15)

where m
(t+1)
i dentoes the ith entry of m(t+1), and Clip[0,1] is a clip function

that clip the variable to 1 if it is larger than 1 and to 0 if it is smaller than 0.
Similarly, δ(t+1) in (12) is obtained by

δ
(t+1)
i = Clip[0,255](bi), (16)

where b := δ(t) − µt∇δF (δ(t),m(t+1)).
The proximal operator ProxµtI′(c) in (13) is given by the solution to the

problem

min
w
I ′(w) +

1

2µt
‖w − c‖22, (17)

which is equivalent to

min
w
‖w − c‖22, s.t. 0 ≤ w ≤ 1, 1Tw = 1. (18)

Here c := w(t) + µt∇wF (δ(t+1),m(t+1),w(t)). The solution to problem (18) is
given by [26]

w(t+1) = [c− µ1]+ , (19)

where [a]+ denotes the operation of max{0, a}, and µ is the root of the equation
1T [c− µ1]+ =

∑
i max{0, ci − µ} = 1.

Substituting (15), (16) and (19) into (11)-(13), we then obtain the complete
algorithm, in which each step has a closed-form.

4 Experimental Results

In this section, We validate the DL-TND and DF-TND by using different CNN
model architectures, datasets, and various trigger patterns3.

3 The code is available at: https://github.com/wangren09/TrojanNetDetector

https://github.com/wangren09/TrojanNetDetector

12 R. Wang et al.

4.1 Data-limited TrojanNet detection (DL-TND)

Trojan settings. Testing models include VGG16 [32], ResNet-50 [16], and
AlexNet [20]. Datasets include CIFAR-10 [19], GTSRB [33], and Restricted Im-
ageNet (R-ImgNet) (restricting ImageNet [9] to 9 classes). We trained 85 Tro-
janNets and 85 clean networks, respectively. The numbers of different models
are shown in Table 6. Fig. 1 (a)-(f) show the CIFAR-10 and GTSRB dataset
with triggers of dot, cross, and triangle, respectively. One of these triggers is
used for poisoning the model. We also test models poisoned for two target la-
bels simultaneously: the dot trigger is used for one target label, and the cross
trigger corresponds to the other target label. Fig. 1 (g)-(i) show poisoned Ima-
geNet samples with the watermark as the trigger. The TrojanNets are various by
specifying triggers with different shapes, colors, and positions. The data poison-
ing ratio also varies from 10% − 12%. The cleanNets are trained with different
batches, iterations, and initialization. Table 7 summarizes test accuracies and at-
tack success rates of our generated Trojan and cleanNets. We compare DL-TND
with the baseline Neural Cleanse (NC) [36] for detecting TrojanNets.

Visualization of similarity scores’ distribution. Fig. 4 shows the distri-

bution of our detection statistics, namely, representation similarity scores v
(k)
sim

defined in Sec. 3.2, for different class labels. As we can see, the distribution
corresponding to the target label 0 in the TrojanNet concentrates near 1, while
the other labels in the TrojanNet and all the labels in the cleanNets have more
dispersed distributions around 0. Thus, we can distinguish the TrojanNet from
the cleanNets and further find the target label.

Fig. 4. Distribution of similarity scores for clean-
Net versus TrojanNet under different classes.

Fig. 5. ROC curve for TrojanNet
detection using DL-TND.

Detection performance. To build DL-TND, we use 5 validation data points for
each class of CIFAR-10 and R-ImgNet, and 2 validation data points for each class
of GTSRB. Following Sec. 3.2, we set I(k) to quantile-0.25, median, quantile-
0.75 and vary T1. Let the true positive rate be the detection success rate for
TrojanNets and the false negative rate be the detection error rate for cleanNets.
Then the area under the curve (AUC) of receiver operating characteristics (ROC)

Practical Detection of Trojan Neural Networks 13

can be used to measure the performance of the detection. Table 2 shows the AUC
values, where “Total” refers to the collection of all models from different datasets.

Table 2. AUC values for TrojanNet detection and
target label detection, given in the format (·, ·).
The detection index for each class is selected as
Quantile (Q) = 0.25, Q = 0.5, and Q = 0.75 of the
similarity scores (illustrated in Fig. 4).

CIFAR-10 GTSRB R-ImgNet Total
Q = 0.25 (1, 1) (0.99, 0.99) (1, 1) (1, 0.99)
Q = 0.5 (1, 0.99) (1, 1) (1, 1) (1, 0.99)
Q = 0.75 (1, 0.98) (1, 1) (0.99, 0.97) (0.99, 0.98)

We plot the ROC curve of
the “Total” in Fig. 5. The re-
sults show that DL-TND can
perform well across different
datasets and model architec-
tures. Moreover, fixing I(k)

as median, T1 = 0.54 ∼
0.896 could provide a detec-
tion success rate over 76.5%
for TrojanNets and a detec-
tion success rate over 82% for cleanNets. Table 3 shows the comparisons of
DL-TND to Neural Cleanse (NC) [36] on TrojanNets and cleanNets (T1 = 0.7).
Even using the MAD method as the detection rule, we find that DL-TND greatly
outperforms NC in detection tasks of both TrojanNets and cleanNets (Note that
NC also uses MAD). The results are shown in Table 8.

Table 3. Comparisons between DL-TND and NC [36] on TrojanNets and cleanNets
using T1 = 0.7. The results are reported in the format (number of correctly detected
models)/(total number of models)

DL-TND (clean) DL-TND (Trojan) NC (clean) NC (Trojan)

CIFAR-10 ResNet-50 20/20 20/20 11/20 13/20
VGG16 10/10 9/10 5/10 6/10
AlexNet 10/10 10/10 6/10 7/10

GTSRB ResNet-50 12/12 12/12 10/12 6/12
VGG16 9/9 9/9 6/9 7/9
AlexNet 9/9 8/9 5/9 5/9

ImageNet ResNet-50 5/5 5/5 4/5 1/5
VGG16 5/5 4/5 3/5 2/5
AlexNet 4/5 5/5 4/5 1/5

Total 84/85 82/85 54/85 48/85

4.2 Data-free TrojanNet detector (DF-TND)

Trojan settings. The DF-TND is tested on cleanNets and TrojanNets that
are trained under CIFAR-10 and R-ImgNet (with 10% poisoning ratio unless
otherwise stated). We perform the customized proximal gradient method shown
in Sec. 3.4 to solve problem (7), where the number of iterations is set as 5000.

Revealing Trojan trigger. Recall from Fig. 2 that the trigger pattern can be
revealed by input perturbations that maximize neuron response of a TrojanNet.
By contrast, the perturbations under the cleanNets behave like random noises.
Fig. 6 provides visualizations of recovered inputs by neuron maximization at a

14 R. Wang et al.

TrojanNet versus a cleanNet on CIFAR-10 and ImageNet datasets. The key in-
sight is that for a TrojanNet, it is easy to find an inverted image (namely, feature
inversion) by maximizing neurons’ activation via (7) to reveal the Trojan char-
acteristics (e.g., the shape of a Trojan trigger) compared to the activation from
a cleanNet. Fig. 6 shows such results are robust to the choice of inputs (even for
a noise input). We observe that the recovered triggers may have different colors
and locations different from the original trigger. This is possibly because the
trigger space has been shifted and enlarged by using convolution operations. In
Figs. 12 and Fig. 13, we also provide additional experimental results for the sen-
sitivity of trigger locations and sizes. Furthermore, we show some improvements
of using the refine method in Fig. 14.

CIFAR-10 input (32× 32) ImageNet input (224× 224) Random noise input (32× 32) Random noise input (224× 224)

S
e
e
d

Im
a
g
e
s

R
e
c
o
v
e
re

d
im

a
g
e
s

(c
le

a
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(c
le

a
n

N
e
t)

R
e
c
o
v
e
re

d
im

a
g
e
s

(T
ro

ja
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(T
ro

ja
n

N
e
t)

True trigger:
Triangle in Fig. 1 (e)

Cross trigger in
Fig. 1 (f)

Watermark trigger
in Fig. 1 (h)

Watermark trigger
in Fig. 1 (j)

Triangle trigger in
Fig. 1 (e)

Cross trigger in
Fig. 1 (f)

Watermark trigger
in Fig. 1 (h)

Watermark trigger
in Fig. 1 (j)

Fig. 6. Visualization of recovered input images by using our proposed DF-TND method
under random seed images. Here the Trojan ResNet-50 models are trained by 10% poi-
soned data (by adding the trigger patterns shown as Fig. 1) and clean data, respectively.
First row: Seed input images (from left to right: 2 randomly selected CIFAR-10 im-
ages, 2 randomly selected ImageNet images, 2 random noise images in CIFAR-10 size,
2 random noise images in ImageNet size). Second row: Recovered images under clean-
Nets. Third row: Perturbation patterns given by the difference between the recovered
images in the second row and the original seed image. Fourth row: Recovered images
under TrojanNets. Fifth row: Perturbation patterns given by the difference between
the recovered images in the fourth row and the original seed images. Trigger patterns
can be revealed using our method under the TrojanNet, and such a Trojan signature
is not contained in the cleanNet. The trigger information is listed in the last row and
triggers are visualized in Fig. 1

Detection performance. We now test 1000 seed images on 10 TrojanNets and
10 cleanNets using DF-TND defined in Sec. 3.3. We compute AUC values of

Practical Detection of Trojan Neural Networks 15

DF-TND by choosing seed images as clean validation inputs and random noise
inputs, respectively.

Table 4. AUC for DF-TND over CIFAR-
10 and R-ImgNet classification models us-
ing clean validation images and random
noise images, respectively

CIFAR-10
model

R-ImgNet
model

Total

clean validation data 1 0.99 0.99
random noise inputs 0.99 0.99 0.99

Results are summarized in Table
4, and the ROC curves are shown in
Fig. 15.

4.3 Additional results on
DL-TND and DF-TND

First, we apply DL-TND and DF-TND
on detecting TrojanNets with different levels attack success rate (ASR). We con-
trol ASR by choosing different data poisoning ratios when generating a Trojan-
Net. The results are summarized in Table 5. As we can see, our detectors can
still achieve competitive performance when the attack likelihood becomes small,
and DL-TND is better than DF-TND when ASR reaches 30%.

Table 5. Comparison between DL-TND
and DF-TND on models at different attack
success rate

poisoning ratio 0.5% 0.7% 1% 10%
average attack success rate 30% 65% 82% 99%
AUC for DL-TND 0.82 0.91 0.95 0.99
AUC for DF-TND 0.7 0.91 0.94 0.99

Moreover, we conduct experiments
when the number of TrojanNets is
much less than the total number of
models, e.g., only 5 out of 55 models
are poisoned. We find that the AUC
value of the precision-recall curves are
0.97 and 0.96 for DL-TND and DF-
TND, respectively. Similarly, the aver-
age AUC value of the ROC curves is
0.99 for both detectors.

Third, we evaluate our proposed DF-TND to detect TrojanNets generalized
by clean-label Trojan attacks [29]. We find that even in the least information
case, DF-TND can still yield 0.92 AUC score when detecting 20 TrojanNets from
40 models.

5 Conclusion

Trojan attack injects a backdoor into DNNs during the training process, there-
fore leading to unreliable learning systems. Considering the practical scenarios
where a detector is only capable of accessing to limited data information, this
paper proposes two practical approaches to detect TrojanNets. We first propose
a data-limited TrojanNet detector (DL-TND) that can detect TrojanNets with
only a few data samples. The effectiveness of the DL-TND is achieved by drawing
a connection between Trojan attack and prediction-evasion adversarial attacks
including per-sample attack as well as all-sample universal attack. We find that
both input perturbations obtained from per-sample attack and from universal
attack exhibit Trojan behavior, and can thus be used to build a detection met-
ric. We then propose a data-free TrojanNet detector (DF-TND), which leverages
neuron response to detect Trojan attack, and can be implemented using random
data samples and even random noise. We use the proximal gradient algorithm

16 R. Wang et al.

as a general optimization framework to learn DL-TND and DF-TND. The ef-
fectiveness of our proposals has been demonstrated by extensive experiments
conducted under various datasets, Trojan attacks, and model architectures.

Acknowledgement

This work was supported by the Rensselaer-IBM AI Research Collaboration
(http://airc.rpi.edu), part of the IBM AI Horizons Network (http://ibm.
biz/AIHorizons). We would also like to extend our gratitude to the MIT-IBM
Watson AI Lab (https://mitibmwatsonailab.mit.edu/) for the general sup-
port of computing resources.

http://airc.rpi.edu
http://ibm.biz/AIHorizons
http://ibm.biz/AIHorizons
https://mitibmwatsonailab.mit.edu/

Practical Detection of Trojan Neural Networks 17

References

1. Model zoo, https://modelzoo.co/

2. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization
for nonconvex and nonsmooth problems. Mathematical Programming 146(1-2),
459–494 (2014)

3. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In:
2017 IEEE Symposium on Security and Privacy (SP). pp. 39–57. IEEE (2017)

4. Chen, B., Carvalho, W., Baracaldo, N., Ludwig, H., Edwards, B., Lee, T., Molloy,
I., Srivastava, B.: Detecting backdoor attacks on deep neural networks by activation
clustering. arXiv preprint arXiv:1811.03728 (2018)

5. Chen, H., Fu, C., Zhao, J., Koushanfar, F.: Deepinspect: a black-box trojan de-
tection and mitigation framework for deep neural networks. In: Proceedings of
the 28th International Joint Conference on Artificial Intelligence. pp. 4658–4664.
AAAI Press (2019)

6. Chen, X., Liu, C., Li, B., Lu, K., Song, D.: Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526 (2017)

7. Cheng, H., Xu, K., Liu, S., Chen, P.Y., Zhao, P., Lin, X.: Defending against back-
door attack on deep neural networks. arXiv preprint arXiv:2002.12162 (2020)

8. Cohen, J., Rosenfeld, E., Kolter, Z.: Certified adversarial robustness via random-
ized smoothing. In: Proceedings of the 36th International Conference on Machine
Learning. pp. 1310–1320 (2019)

9. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-
scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

10. Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran, B., Madry, A.: Learn-
ing perceptually-aligned representations via adversarial robustness. arXiv preprint
arXiv:1906.00945 (2019)

11. Fong, R., Patrick, M., Vedaldi, A.: Understanding deep networks via extremal
perturbations and smooth masks. In: Proceedings of the IEEE International Con-
ference on Computer Vision. pp. 2950–2958 (2019)

12. Gao, Y., Xu, C., Wang, D., Chen, S., Ranasinghe, D.C., Nepal, S.: Strip: A defence
against trojan attacks on deep neural networks. In: Proceedings of the 35th Annual
Computer Security Applications Conference. pp. 113–125 (2019)

13. Goodfellow, I.J., Shlens, J., Szegedy, C.: Explaining and harnessing adversarial
examples (2014)

14. Gu, T., Dolan-Gavitt, B., Garg, S.: Badnets: Identifying vulnerabilities in the ma-
chine learning model supply chain. arXiv preprint arXiv:1708.06733 (2017)

15. Guo, W., Wang, L., Xing, X., Du, M., Song, D.: Tabor: A highly accurate ap-
proach to inspecting and restoring trojan backdoors in ai systems. arXiv preprint
arXiv:1908.01763 (2019)

16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

17. Kalchbrenner, N., Grefenstette, E., Blunsom, P.: A convolutional neural network
for modelling sentences. arXiv preprint arXiv:1404.2188 (2014)

18. Kolouri, S., Saha, A., Pirsiavash, H., Hoffmann, H.: Universal litmus patterns:
Revealing backdoor attacks in cnns. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 301–310 (2020)

https://modelzoo.co/

18 R. Wang et al.

19. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny
images. Tech. rep., Citeseer (2009)

20. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems.
pp. 1097–1105 (2012)

21. Kurakin, A., Goodfellow, I., Bengio, S.: Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533 (2016)

22. Liu, Y., Lee, W.C., Tao, G., Ma, S., Aafer, Y., Zhang, X.: Abs: Scanning neural
networks for back-doors by artificial brain stimulation. In: Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security. pp. 1265–
1282 (2019)

23. Liu, Y., Ma, S., Aafer, Y., Lee, W.C., Zhai, J., Wang, W., Zhang, X.: Trojaning
attack on neural networks (2017)

24. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning
models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083 (2017)

25. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial
perturbations. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. pp. 1765–1773 (2017)

26. Parikh, N., Boyd, S., et al.: Proximal algorithms. Foundations and Trends R© in
Optimization 1(3), 127–239 (2014)

27. Peri, N., Gupta, N., Ronny Huang, W., Fowl, L., Zhu, C., Feizi, S., Goldstein,
T., Dickerson, J.P.: Deep k-nn defense against clean-label data poisoning attacks.
arXiv pp. arXiv–1909 (2019)

28. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: Towards real-time object detec-
tion with region proposal networks. In: Advances in neural information processing
systems. pp. 91–99 (2015)

29. Shafahi, A., Huang, W.R., Najibi, M., Suciu, O., Studer, C., Dumitras, T., Gold-
stein, T.: Poison frogs! targeted clean-label poisoning attacks on neural networks.
In: Advances in Neural Information Processing Systems. pp. 6103–6113 (2018)

30. Shafahi, A., Najibi, M., Ghiasi, M.A., Xu, Z., Dickerson, J., Studer, C., Davis, L.S.,
Taylor, G., Goldstein, T.: Adversarial training for free! In: Advances in Neural
Information Processing Systems. pp. 3353–3364 (2019)

31. Shen, Y., Sanghavi, S.: Learning with bad training data via iterative trimmed loss
minimization. In: International Conference on Machine Learning. pp. 5739–5748
(2019)

32. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556 (2014)

33. Stallkamp, J., Schlipsing, M., Salmen, J., Igel, C.: Man vs. computer: Benchmark-
ing machine learning algorithms for traffic sign recognition. Neural networks 32,
323–332 (2012)

34. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I.,
Fergus, R.: Intriguing properties of neural networks. 2014 ICLR arXiv preprint
arXiv:1312.6199 (2014)

35. Tran, B., Li, J., Madry, A.: Spectral signatures in backdoor attacks. In: Advances
in Neural Information Processing Systems. pp. 8000–8010 (2018)

36. Wang, B., Yao, Y., Shan, S., Li, H., Viswanath, B., Zheng, H., Zhao, B.Y.: Neural
cleanse: Identifying and mitigating backdoor attacks in neural networks. Neural
Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks p. 0
(2019)

Practical Detection of Trojan Neural Networks 19

37. Xiang, Z., Miller, D.J., Kesidis, G.: Revealing backdoors, post-training, in dnn clas-
sifiers via novel inference on optimized perturbations inducing group misclassifica-
tion. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). pp. 3827–3831. IEEE (2020)

38. Xie, C., Huang, K., Chen, P.Y., Li, B.: DBA: Distributed backdoor attacks
against federated learning. In: International Conference on Learning Represen-
tations (2020)

39. Xu, X., Wang, Q., Li, H., Borisov, N., Gunter, C.A., Li, B.: Detecting ai trojans
using meta neural analysis. arXiv preprint arXiv:1910.03137 (2019)

40. Yao, Y., Li, H., Zheng, H., Zhao, B.Y.: Latent backdoor attacks on deep neural
networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security. pp. 2041–2055 (2019)

41. Zhang, D., Zhang, T., Lu, Y., Zhu, Z., Dong, B.: You only propagate once: Accel-
erating adversarial training via maximal principle. In: Advances in Neural Infor-
mation Processing Systems. pp. 227–238 (2019)

42. Zhang, H., Yu, Y., Jiao, J., Xing, E., Ghaoui, L.E., Jordan, M.: Theoretically
principled trade-off between robustness and accuracy. In: Proceedings of the 36th
International Conference on Machine Learning. pp. 7472–7482 (2019)

43. Zhao, P., Chen, P.Y., Das, P., Ramamurthy, K.N., Lin, X.: Bridging mode connec-
tivity in loss landscapes and adversarial robustness. In: International Conference
on Learning Representations (2020)

44. Zhu, C., Huang, W.R., Li, H., Taylor, G., Studer, C., Goldstein, T.: Transferable
clean-label poisoning attacks on deep neural nets. In: Proceedings of the 36th
International Conference on Machine Learning. pp. 7614–7623 (2019)

20 R. Wang et al.

A Data-Limited TrojanNet Detector (DL-TND)

Visualization of neuron activation. DL-TND tests all the labels (classes)
by calculating one universal perturbation and multiple per-image perturbations
for each label. Each data sample can obtain a neuron activation vector with
the universal perturbation and a neuron activation vector with its per-image
perturbation. In Fig. 7, we show the neuron activation of five data samples with
universal perturbations and per-image perturbations under a target label, a non-
target label, and a label in a clean network (cleanNet). The output magnitude
for each coordinate is represented using gray scale. One can see that the strong
similarities only appear under the target label, which supports our motivation
for the DL-TND.

N
e
u
ro

n
a
c
ti
v
a
ti
o
n

(U
n
iv
e
rs
a
l)

N
e
u
ro

n
a
c
ti
v
a
ti
o
n

(P
e
r-
im

a
g
e
)

Target label Non-target label Label in cleanNet

Fig. 7. Output values of neuron activation with universal perturbation and per-image
perturbation from five data samples. The first column shows the outputs corresponding
to the target label. The second column shows the outputs corresponding to a non-
target label in a Trojan network (TrojanNet). The third column shows the outputs
corresponding to a label in a cleanNet. One can see that the strong similarities only
appear under the target label, which supports the motivation for the data-limited
Trojan detector.

Detection rule using median absolute deviation. Instead of using the
detection rule in the main body of the paper, we can also employ the median
absolute deviation (MAD) method. By MAD, if a single value in the k-th position

of
|(I)1/2−I|

1.4826·|(I)1/2−I|1/2
is larger than 2 (provide 95% confidence rate), the network

is poisoned and label k is a target label, where I = [I(1), I(2), · · · , I(K)]. | · |
represents the absolute value. (·)1/2 is the median of values in a vector. We
compare DL-TND to Neural Cleanse (NC) [36] in Table 8 using MAD as the
detection rule.

Practical Detection of Trojan Neural Networks 21

B Data-Free TrojanNet Detector (DF-TND)

Visualization of logits output increase. Fig. 8 and 9 visualize the change of
the logits output of 10 data samples under a cleanNet and a TrojanNet when la-
bel 4 (lab4) is the target label. One can see that the minimum increase belonging
to the target label is 600 while the maximum increase for labels in the cleanNet
is 10. This large gap suggests that TrojanNets can be detected by properly se-
lecting T2 and there exists a wide selection range, implying the stability of our
method.

Fig. 8. Visualization of logits output in-
crease of 10 data samples using DF-TND
on a TrojanNet when label 4 is the target
label. The minimum increase belonging to
the target label is 600

Fig. 9. Visualization of logits output in-
crease of 10 data samples using DF-TND
on a cleanNet. The maximum logits out-
put increase is 10

C DL-TND: Additional Experiments

Models for testing. Table 6 shows the numbers of different models used for
testing. Models have three different architectures and are applied to CIFAR-10,
GTSRB, and R-ImgNet. We trained 85 TrojanNets and 85 cleanNets, respec-
tively. In addition to the diversity of model architecture and dataset types, we
also train TrojanNets with different triggers. Table 7 shows the smallest test
accuracy and attack success rate for TrojanNets and cleanNets. TrojanNets can
reach a similar test accuracy as cleanNets while still keeping the high attack
success rate. This suggests that they are valid TrojanNets as defined in Sec. 2.1.
Applying median absolute deviation method as the detection rule.
Table 8 provides the comparisons between DL-TND and NC method [36] on
Trojan and cleanNets using Median Absolute Deviation (MAD) as the detection
rule. Even using the MAD method as the detection rule, we find that DL-TND
greatly outperforms NC in detection tasks of both TrojanNets and cleanNets.
Varying number of data samples in each class. We also vary the number
of validation data points for CIFAR-10 models and see the detection perfor-
mance when we choose the quantile to be 0.5 (median). The number of data

22 R. Wang et al.

Table 6. Numbers of different models for detection: Model structures include
ResNet50, VGG16, AlexNet. Datasets include CIFAR-10, GTSRB, and R-ImgNet.

CIFAR-10 GTSRB R-ImgNet

ResNet50 (TrojanNet) 20 12 5

ResNet50 (cleanNet) 20 12 5

VGG16 (TrojanNet) 10 9 5

VGG16 (clean) 10 9 5

AlexNet (TrojanNet) 10 9 5

AlexNet (cleanNet) 10 9 5

Total 80 60 30

Table 7. The smallest test accuracy and attack success rate for TrojanNets and clean-
Nets. TrojanNets can reach a similar test accuracy as cleanNets while still keeping the
high attack success rate. This suggests that they are valid TrojanNets as defined in
Sec. 2.1

CIFAR-10 GTSRB R-ImgNet

Test accuracy (Trojan) 90.51% 92.99% 86.7%
Attack success rate 99.65% 99.65% 98.6%
Test accuracy (clean) 92.64% 92.5% 87.8%

points in each class is chosen as 1, 2, and 5 and the corresponding AUC values
are 0.96, 0.98 and 1, respectively. We can see that the data-limited TrojanNet
detector is effective even when only one data point is available for each class.

ROC curve for target label detection. Let the true positive rate be the
detection success rate of target labels and the false negative rate be the detection
error rate of cleanNets. Table 2 also shows the AUC values for target label
detection, and Fig. 10 shows the ROC curves for target label detection using
DL-TND. We set I(k) to quantile-0.25, median, quantile-0.75 of the similarity
values and vary T1. Under the three different quantile selections, AUC values
are all above 0.98.

Visualization of the universal perturbations. In Fig. 11, we show the uni-
versal perturbation obtained through (2). Due to the presence of backdoor in
TrojanNets, universal perturbations can reveal common patterns with the real
triggers, and this property is reflected in Fig. 11. Since DL-TND tries to find
the smallest universal perturbation, the recovered perturbation pattern could be
much more sparse than the Trojan trigger when the Trojan trigger is very com-
plicated. This can be viewed in the perturbation pattern in the last two columns
of Fig. 11.

Practical Detection of Trojan Neural Networks 23

Table 8. Comparisons between DL-TND and NC [36] on TrojanNets and cleanNets
using Median Absolute Deviation as the detection rule (measured by number of correct
detection/model number).

DL-TND (clean) DL-TND TND (poisoned) NC (clean) NC (poisoned)

CIFAR-10 ResNet-50 16/20 17/20 11/20 13/20
VGG16 8/10 8/10 5/10 6/10
AlexNet 8/10 8/10 6/10 7/10

GTSRB ResNet-50 9/12 12/12 10/12 6/12
VGG16 7/9 9/9 6/9 7/9
AlexNet 7/9 9/9 5/9 5/9

ImageNet ResNet-50 4/5 4/5 4/5 1/5
VGG16 4/5 3/5 3/5 2/5
AlexNet 4/5 4/5 4/5 1/5

Total 67/85 74/85 54/85 48/85

Fig. 10. ROC curve for target label detection using data-limited TrojanNet detector
over 85 TrojanNets and 85 cleanNets

D DF-TND: Additional Experiments

The sensitivity to trigger locations and sizes. Fig. 12 and Fig. 13 provide
the experimental results for the sensitivity to trigger locations and sizes. Fig. 12
shows that locations of perturbations vary when the locations of Trojan triggers
vary. However, the recovered perturbations do not always have the same locations
as the Trojan triggers. Patterns shifted and enlarged due to the convolution
operations. Fig. 13 shows that DF-TND can recover the trigger pattern when
the size of the Trojan trigger increases, and the area of the recovered perturbation
increases when the size of the Trojan trigger increases.
Improvements using the refine method - maximizing the neuron acti-
vation corresponding to the Trojan-related coordinate. Note that once
the recovered data is obtained from the optimization problem (7), one can find
the coordinate related to Trojan feature by checking the largest neuron activa-

24 R. Wang et al.

tion value (or the largest weight) among all the coordinates. Then maximizing
the output of the Trojan-related coordinate separately could provide a better
result. Fig. 14 shows the improvements using DF-TND together with our refine
method - maximizing the neuron activation corresponding to the Trojan-related
coordinate. The refine method can increase the logits output belonging to the
target label, while decrease the logits outputs belonging to the non-target labels
simultaneously.
ROC curves for TrojanNet detection with clean validation inputs and
random noise inputs. Fig. 15 (a) and (b) show the ROC curves for TrojanNet
detection with clean validation inputs and random noise inputs, respectively.
The true positive rate is the detection success rate for TrojanNets and the false
negative rate is the detection error rate for cleanNets. In both cases, DF-TND
can reach nearly perfect AUC values 0.99. T2 = 55−400 could provide a detection
success rate of more than 85% for TrojanNets and a detection success rate of
over 90% for cleanNets.
Recovered perturbations under different λ.

In Fig. 16 and Fig. 17, we vary the sparsity penalty parameter λ and ob-
tain perturbations under a TrojanNet and a cleanNet. One can find that the
trigger pattern appears in the perturbations under the TrojanNet. The pertur-
bations under cleanNet behave like random noises. Another discovery is that the
perturbations become more and more sparse when λ increases.

This method also works for random noise inputs. Fig. 17 shows the original
noise images, trigger, perturbations under poisoned model, and perturbations
under cleanNet. The same behaviors as the clean inputs are observed.

Practical Detection of Trojan Neural Networks 25

CIFAR-10 input GTSRB input ImageNet input

S
e
e
d

Im
a
g
e
s

R
e
c
o
v
e
re

d
im

a
g
e
s

(c
le

a
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(c
le

a
n

N
e
t)

T
ro

ja
n

tr
ig

g
e
rs

R
e
c
o
v
e
re

d
im

a
g
e
s

(T
ro

ja
n

N
e
t)

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

(T
ro

ja
n

N
e
t)

Fig. 11. Visualization of the universal perturbations obtained by our proposed DL-
TND. Here the TrojanNets are trained by 10% poisoned data and clean data, respec-
tively. First row: Seed input images (from left to right: 2 randomly selected CIFAR-10
images, 2 randomly selected GTSRB images, 2 randomly selected ImageNet images).
Second row: Recovered images under cleanNets. Third row: Perturbation patterns given
by the difference between the recovered images in the second row and the original seed
image. Fourth row: Trojan triggers used for TrojanNets. Fifth row: Recovered images
under TrojanNets. Sixth row: Perturbation patterns given by the difference between
the recovered images in the fifth row and the original seed images. Perturbation has
common patterns with the real Trojan triggers. Since DL-TND tries to find the small-
est universal perturbation, the recovered perturbation pattern could be much more
sparse than the Trojan trigger when the Trojan trigger is very complicated. This can
be viewed in the perturbation pattern in the last two columns.

26 R. Wang et al.

T
ro

ja
n

tr
ig
g
e
rs

C
le
a
n

In
p
u
t
1

P
e
rt
u
rb

a
ti
o
n
s
1

C
le
a
n

In
p
u
t
2

P
e
rt
u
rb

a
ti
o
n
s
2

N
o
is
e
In

p
u
t
3

P
e
rt
u
rb

a
ti
o
n
s
3

N
o
is
e
In

p
u
t
4

P
e
rt
u
rb

a
ti
o
n
s
4

center: [5,5] center: [5,15] center: [5,25] center: [15,5] center: [15,15] center: [15,25] center: [25,5] center: [25,15] center: [25,25]

Fig. 12. Visualization of perturbations when locations of Trojan triggers change. Here
the TrojanNets are trained by 10% poisoned data and clean data, respectively. First
row: Trojan triggers in different locations (the centers of the triggers are listed above).
Second row: Clean seed image 1 (ship). Third row: Recovered perturbations 1 with
input from the second row. Fourth row: Clean seed image 2 (deer). Fifth row: Recovered
perturbations 2 with input from the fourth row. Sixth row: random noise seed image
3. Seventh row: Recovered perturbations 3 with input from the sixth row. Eighth row:
random noise seed image 4. Ninth row: Recovered perturbations 4 with input from the
eighth row. Locations of perturbations vary when the locations of Trojan triggers vary.
However, the recovered perturbations do not always have the same locations as the
Trojan triggers. Patterns shifted and enlarged due to the convolution operations.

Practical Detection of Trojan Neural Networks 27

trigger size 3× 3 trigger size 5× 5 trigger size 7× 7 trigger size 9× 9

T
ro

ja
n

tr
ig

g
e
rs

S
e
e
d

im
a
g
e
s

R
e
c
o
v
e
re

d
im

a
g
e
s

P
e
rt

u
rb

a
ti

o
n

p
a
tt

e
rn

Fig. 13. Visualization of perturbations when sizes of Trojan triggers change. Here the
Trojan ResNet-50 models are trained by 10% poisoned data and clean data, respec-
tively. We vary the trigger size from 3× 3 to 9× 9 and show the recovery in different
columns. First row: Trojan triggers with different sizes (the sizes of the triggers are
listed above). Second row: Seed images (clean CIFAR-10 images and random noise
images). Third row: Recovered images with inputs from the second row. Fourth row:
Perturbation patterns given by the difference between the recovered images in the
third row and the seed images. One can see that the area of the recovered perturbation
increases when the size of the Trojan trigger increases.

(a) (b)

Fig. 14. Improvements using DF-TND together with our refine method - maximizing
the neuron activation corresponding to the Trojan-related coordinate: (a) Visualization
of logits output increase of 10 random noise inputs before using the refine method when
label 4 is the target label. The maximum increase belonging to the target label is 600,
the maximum decreasing belonging to the non-target label is 600. (b) Visualization of
logits output increase of the same 10 random noise inputs after using the refine method
when label 4 is the target label. The maximum increase belonging to the target label
is 2500, the maximum decreasing belonging to the non-target label is 1500. The refine
method increases the logits output belonging to the target label, while decreases the
logits outputs belonging to the non-target labels

28 R. Wang et al.

(a) (b)

Fig. 15. ROC curves for TrojanNet detection with clean validation inputs and ran-
dom noise inputs: (a) Clean validation inputs (AUC=0.99) (b) Random noise inputs
(AUC=0.99)

T
ro

ja
n
N
e
t

c
le
a
n
N
e
t

clean inputs Trojan vs. clean λ = 0.000001 λ = 0.00001 λ = 0.0001 λ = 0.001

Fig. 16. Visualization of perturbations with CIFAR-10 image inputs when the sparsity
penalty parameter λ varies. First row: Images under a TrojanNet. Second row: Images
under a cleanNet.

T
ro

ja
n
N
e
t

c
le
a
n
N
e
t

random noise inputs Trojan vs. clean λ = 0.000001 λ = 0.00001 λ = 0.0001 λ = 0.001

Fig. 17. Visualization of perturbations with random noise inputs when the sparsity
penalty parameter λ varies. First row: Images under a TrojanNet. Second row: Images
under a cleanNet.

	Practical Detection of Trojan Neural Networks: Data-Limited and Data-Free Cases

