DeepLandscape: Adversarial Modeling of
Landscape Videos
Supplementary material

Elizaveta Logacheva!, Roman Suvorov!, Oleg Khomenko!, Anton Mashikhin',
and Victor Lempitsky!2

! Samsung AI Center, Moscow
2 Skolkovo Institute of Science and Technology, Moscow

1 Training the main model

Training Configuration Our final models follows original StyleGAN training
schedule. We alternate between two phases: a resolution transition phase for
600k samples then a stabilization phase for 600k samples. After final reslution is
reached we train model until the number of batches reaches 450k. The proportion
of pairwise discriminator changes linearly from 0.5 to 0.1 during the resolution
transition phase. We use crops instead of generated frames when update pairwise
discriminator with probabily 0.5. For inference we used accumulated exponential
moving average with a = 0.999 to generate samples. Our final model was trained
using Adam optimizer with parameters 5; = 0, 82 = 0.99.

As in the original StyleGAN, we change batch size parameter depending on
resolution: (4px, 512), (8px, 256), (16px, 128), (32px, 64), (64px, 32), (128px,
32), (256px, 16), (512px, 8), (1024px, 8). Learning rates are: (up to 128px, le-3),
(128px, 1.5e-3), (256px, 2e-3), (eq. or bigger than 256px, 3e-3)

Pairwise Discriminator The pairwise discriminator differs from the original
StyleGAN discriminator only in the input Conv 1x1 layer which has half the
number of output channels of the original StyleGAN discriminator and is applied
to each frame independently. After that both feature maps are concatenated.

Balancing discriminators To choose the most effective way of balancing
two discriminators we evaluated four different experiments (image resolution
is 128px). While freq = 0.3 and freq = 0.5 suffer from much worse image quality,
decay and freq = 0.1 behaves similarly but decay works slightly better on moving
objects and generates more compelling dynamics.

2 Inference Details

Our overall inference procedure consists of the following steps.

1. Training encoder E on a dataset of samples from a pretrained G.
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Setup |FID| SSIMt LPIPS| Rt
decay |56.13 0.884 0.062 0.00
freq = 0.1/54.15 0.880 0.064 -0.03
freq = 0.3]63.48 0.887 0.058 -0.12
freq = 0.5/82.10 0.893 0.055 -0.15
Table 1. Different techniques to balance discriminators. The column R in the table
is obtained from the side-by-side user study. It shows the change in frequency when
assessors prefer this variant to the default one (decay). Although decaying the relative
frequency doesn’t give the best results when comparing against any quantitative metric,
it balances image quality with motion plausibility and wins user preference.

2. Given a real image x to be animated, obtain a set of style vectors W’ using
E.

3. Starting from W', find W and S with gradient descent, to improve recon-
struction and preserve ability to animate.

4. Having x, W, S fixed, optimize G to improve reconstruction even more.

Steps 1, 2, 4 are pretty simple, so their description in the paper is fairly
detailed. Thus, here we present only the extended definition of the step 3 (la-
tents optimization). We present two variants: one without using a segmentation
mask (Algorithm 1, a part of EOI and EOIF); and another one relying on a
segmentation mask to route information between S% and SV (Algorithm 2, a
part of EOIFS). Other variants of inference can be obtained by changing EOI,
specifically:

— turning off the W penalty L3 ., (EO, MO, 12S);
changing W initialization: mean style instead of E predictions (MO, 12S);
— changing § initialization: random instead of zero (I12S, E);
— turning off optimization of § (12S);
not optimizing latents at all (E).

In I2S, we also tried using E-based initialization for W, with no success.
Initialization of S is not very important in EOI, EOIF, EOIFS, but starting
from zeros slightly helps stability.

In order to regularize S and to prevent too much details to be described by
spatial inputs, we tried both L2-regularization and gradient scaling. While L2
helps, we found gradient scaling much more efficient: it leads to better conver-
gence (more accurate reconstruction) and still allows to push information from
S to W. We found experimentally that during latents optimization % should
be divided by 1000 for best results. This effectively changes relative learning rate
for S, comparing to the learning rate of W.

2.1 What z9™ Actually Describe?

In order to manipulate lighting on a real image, we train a dedicated neural
network A, which approximates local dynamics of a multilayer perceptron M,
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Algorithm 1 EOLI: initialize with Encoder, Optimize, tie W to Initial values
Inputs: generator G, style initialization W, input image z.

Outputs: optimized W, S

Hyperparameters: number of iterations N, perceptual loss coefficient A\py, = 0.01,
gradient scale for S As = 0.001, Adam learning rate Ir = 0.1.

1 W« w’

2: §+0 .

3: UpdateRule < initialize Adam optimizer for W, S

4: qter <+ 0

5: while iter < N do

6: y+— GW,S) > Obtain reconstructed image
7: L9, + MAE(y,z) + ApPL(y, x) > Reconstruction loss
8: L., MSE(W, 4% > Style regularization
9: L« LY, + LS, > Total latents loss
10: Calculate ;WL\; > loss.backward()
11: i‘%o/\ s 0;‘; o . > Scale gradients for S
12: W, S < UpdateRule(W, 7%3)
13: If LC does not improve over 20 iterations, halve Ir
14: If LC does not improve over 100 iterations, stop early

15: iter < iter + 1
16: end whi/lg R
17: return W, S

which maps z to w. During training of G and M, z&™ € R3 is sampled from
standard normal distribution. However, it is not practical to sample styles for
real images, because we usually want to get something concrete (e.g. day to
evening or evening to night conversion).

Thus, we needed a technique to build an ”interpretation” of 3 numbers which
make up z¥". A well established approach for that is to (a) sample a set of
synthetic images from G, (b) manually assign them class labels (e.g. day, evening,
night); (c) obtain ”direction vectors”, which correspond to the shortest path from
one class to another in the latent space. Having direction vectors, one can modify
z¥™ along them in order to change image style accordingly. This approach can
help to build an interpretation of a complex high-dimensional model.

However, in our case we have only 3 components to interpret, thus we decided
to take a more simple way: manually change z¥¥" coordinates one-by-one and
try to describe the way the image changes. For each coordinate we tried values
from {—3,—2,—1,0,1,2,3} while keeping other coordinates zero. We also tried
changing pairs and triplets of coordinates the same way.

We found that as a result of multiple G training sessions on the same dataset,
z¥" consistently received approximately the following semantics:

1. The first coordinate changes brightness without altering color temperature
(day-to-night). Thus, when moving from day to night we do not arrive to a
warm yellow sunset.
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Algorithm 2 EOIFS: initialize with Encoder, Optimize, tie W to Initial values,
guide § with Segmentation

Inputs: generator G, style initialization W', input image z, static regions mask m (1
for static regions, 0 for sky and water).

Outputs: optimized W7§

Hyperparameters: number of iterations N, perceptual loss coefficient A\py, = 0.01,
gradient scale for S As = 0.001, Adam learning rate {r = 0.1.

LW e W R
2: 8§st,8dyn 0 L > Initialize S with zeros
3: UpdateRule < initialize Adam optimizer for W, S
4: iter <0
5: while iter < N do
6 y+— GW,S) > Obtain reconstructed image
7 L9 +— MSEOW, W) > Style regularization
8 if iter % 2 == 0 then > Even iterations are for static regions
9: Ym — Yyom > Zero out dynamic regions
10: Tm T OM
11: L., < MAE(Ym,Tm) + ApLPL(Ym, Tm) > Reconstruction loss
12: L « L9, + LS, > Total latents loss
13: Calculate —222_ > Calculate grad only w.r.t Sst
aW,S5t
O (@] —
14: 0L~ . N\gOL_ > Scale gradients for Sst
Qgst/\ oSst P o
15: W, Sst < UpdateRule(W, Sst, 2L—)
oW, S5t
16: else
17: Ym —yo(l—m) > Zero out static regions
18: ZTm < x0 (1 —m)
19: L?ec — MAE(Ym,Tm) + APLPL(Ym, Tm) > Reconstruction loss
20: L «— L8 . + L > Total latents loss
21: Calculate E#ﬁ\ > Calculate grad only w.r.t Sdv»
8W7den
> o -
22: oLe . \g-2L2 > Scale gradients for Sdy»
Q§dy;\ oSdyn P °
23: W, S « UpdateRule(W, Sy, —8L—_)
aWw,Sdyn
24: end if
25: If L® does not improve over 20 iterations, halve Ir

26: iter < iter + 1
27: end whi/lg N
28: return W, S
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2. The second coordinate changes brightness and color temperature together:
negative values lead to darker images with all lights (city, sunset) getting
more saturated and warm; positive values lead to lighter images with colder
colors. One can get day-to-evening conversion with that coordinate alone.

3. The third coordinate does almost the same as the first one does. We found
no significant difference between them.

4. By changing the first and the second coordinates, one can obtain dark night,
warm sunset, blue hour, bright day with clouds, bright day with clear sky.

Our experiments show that z¥" affects image style in a fairly monotonic
way.

Using the described methodology, we constructed a vocabulary of 9 styles,
which correspond to different time of day and weather. We use only these styles
for all videos where we animate real images for our quantitative and qualitative
experiments. We use styles randomly sample from normal distribution for fully
synthetic videos.

3 Inference procedure ablation study.

Where we quantify the impact of different elements of our inference algorithm
on the reconstruction accuracy, image quality, static consistency and motion
amount. Image quality and static consistency for best inference variants (EOIF
and EOIFS) are discussed in the paper, Section 4 (Experiments). The recon-
struction quality is evaluated via LPIPS and SSIM measured between the input
and the reconstructed images. The amount of motion is quantified as mean op-
tical flow [1] in the sky region, according to semantic segmentation. We generate
videos in the same way as for other experiments. The results of this ablation
study (Table 2) verify that all steps of our inference procedure are needed to
obtain animations that both have plausible motion and fit the input images
well.

Algorithm[SSIM1[LPIPS|[Flowx 10" 1

12S[2] [ 0.80 | 0.18 1.3
MO | 0.95 | 0.07 1.3
E 0.54 | 0.43 2.2
EO | 095 | 0.07 15
EOI | 0.92 | 0.11 2.5
EOIF | 0.96 | 0.04 2.3
EOIFS | 0.94 | 0.05 2.6

Table 2. Quantitative evaluation of inference procedure: reconstruction quality and
motion amount. While sevral variants result in good reconstruction, only EOIF and
EOIFS variants yield both good reconstruction and motion.
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4 Animated Landscape finetuning

In order to ensure fair comparison, we tried to reproduce results from AL paper
using only our video dataset. We tried both training from scratch and finetuning
the publicly available model for 50 to 200 epochs. Training from scratch did not
converge, so we present here only metrics obtained with finetuning. Table 3
shows that finetuning damages the model. This is most probably due to the very
small dataset, which contains motions of very different speed. Authors of AL
somehow equalized speed of different videos, but the exact methodology for that
is unknown. Training on unequalized videos is harmful. On contrary, our model
does not require equalization of motion speed, which allows to use more dirty
data without degradation of performance.

[FVD]JLPIPS|[SSIM1[FID{[User preferencet

ALnoint 162 | 0.063 | 0.92 |51.9 0.68
ALfnetunea| 159 | 0.065 | 0.92 |53.4 0.32

Table 3. Comparison of pretrained and finetuned AL
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Fig. 1. Continuation of Figure 7. Quantitative comparison of image quality, static
consistency and motion plausibility
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5 The Structural Similarity Index (SSIM)

Figure 1 presents masked SSIM between I and fn, which mostly measure image
quality and static consistency. Note that TS baseline, which uses segmentation
and simply copies static parts, outperforms other methods (but losses the game
when it comes to perceptual quality and motion plausibility).

6 Side-by-side Comparison on the speed of real videos

Method [EOIF[EOIFS
SG 0.28 [ 0.27
AL (noint) [ 0.33 | 0.36
AL (+ style) | 0.14 | 0.12

TS 0.11 | 0.12
Real 0.68 | 0.70

Ours (EOIF) - 0.52
Ours (EOIFS)| 0.48 -

Fig. 2. Ratio of wins row-over-column for side-by-side setting B, synthetic video speed
aligned to that of real ones (faster videos).

On Figure 2 we present side-by-side user study, setup B, i.e. with speed of
synthetic videos aligned to that of real ones. Note that real videos win more
often, but advantage of our method against competitors is even more evident.
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