
Towards Precise Completion of Deformable
Shapes Supplementary Material

Oshri Halimi?1, Ido Imanuel?1, Or Litany2, Giovanni Trappolini3,
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In this supplementary we provide:

1. Further analysis of our network design

− An ablation experiment demonstrating the improved reconstruction over
a fixed template due to the full shape Q in Section 1.1.

− Robustness analysis of our trained network in Section 1.2.
− An experiment exploring the network operation under different types of

projections, resulting from elevated viewpoints, in Section 1.3

2. Additional visualizations of the network reconstructions in Section 2.
3. Visualizations of the dense correspondence results from the partial shape to

the full shape in Section 3.

1 Analysis

1.1 Comparison with a fixed template baseline

As described in the main manuscript, in order to predict the completion of a
partial shape P , our method requires a full reference shape Q of the same subject
in an arbitrary pose. We motivate this setting by a requirement for a completion
that is faithful to the subject shape. This is different from previous completion
methods which can only approximate or hallucinate missing details. Here we
support this claim experimentally, by comparing with a baseline that uses a fixed
template. Specifically, instead of providing a full shape Q of the same subject
as the partial shape P , we provide a fixed template T for all inputs. With this
modification, the ablation network is trained with the triplets {(Pn, T,Rn)}Nn=1,
where N is the size of the training set. At inference time, we use the same
template T to make a prediction for a given input part P . We chose the template
to be the first subject from the FAUST Projections dataset, in its null pose
as shown in Figure 1. Both the original and the fixed-template networks were
trained on the FAUST Projections training set, with identical parameters and
for the same number of epochs, as described in Section 3.6 in the paper. Table 1
summarizes the prediction errors of both methods, Figure 3 compares the partial
correspondence results and Figure 2 shows visual comparison. The results clearly
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Fig. 1. Constant template used in ablation fixed-template experiment

show the benefit of utilizing the shared geometry between the part and a full
non-rigid observation of it. In particular, we receive a noticeable improvement
in correspondence prediction as well as a lower reconstruction error across all
metrics. Perhaps more importantly, Figure 2 demonstrates the main motivation
of our framework: a completion that respects the fine details of the underlying
shape. To further emphasize this effect, we magnify the face regions of each
shape, showing the loss in intricate details achieved with the alternative training
method.

Figure 2 implies how powerful our method is when it comes to the reconstruc-
tion of fine details, such as the facial structure and delicate body features. We
verify that acquiring access to a full observation in inference time can significantly
improve the reliability of the reconstruction for a network trained to utilize such
information. In the absence of this full observation at inference time, the ablation
network can only utilize the input part and the acquired statistics of the training
examples, encoded in the network weights. While this later information can be
used for coarse completion, we evidence it is not sufficient for precise completion.



Towards Precise Completion of Deformable Shapes Supplementary Material 3

Fig. 2. Comparison with fixed-template ablation experiment. Our method re-
covers the shape details much more faithfully.

1.2 Robustness Analysis

We now turn to analyze the robustness and stability of our proposed method
with regard to three important factors: Noise, sampling, viewpoint and proximity
between the source and target poses. For this, we utilize a network trained on the
FAUST train set and evaluate over a disjoint test-set of 200 single-view projected
scans produced from 10 viewpoints of 2 subjects exhibiting 10 different poses.
Each scan P is matched with all possible poses Q of the same subject, achieving a
total of 2000 inputs. We utilize a descriptive partial set of the evaluation metrics
proposed in section 4.2 of the paper to evaluate each experiment. Lastly, we
examine how our network fares when we query for more complex deformations,
depicting the averaged reconstruction errors over the azimuthal projection angles
as a function of the L2 distance from the template and ground truth shapes.
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Euclidean
distance

Volumetric
err.

Chamfer
GT → Recon.

Chamfer
Recon. → GT

Full
Chamfer

Ablation 3.74 17.63± 7.41 3.00 2.32 5.32
Ours 2.94 7.05± 3.45 2.42 1.95 4.37

Table 1. Comparison with Fixed-Template Ablation Experiment. We evaluate
our method against an ablation experiment, repeating exactly the same training except
of one significant difference: instead of providing the full shape Qn as described in the
main paper, we provided a constant full template T in each of the training examples
{(Pn, T,Rn)}Nn=1. The template T is used in inference as well, to predict the completion
of a given input part P . We report the prediction errors on FAUST test set, while both
networks were trained on FAUST train set. The first and second rows summarize the
ablation errors and our method errors, respectively.

0 10 20 30 40

Geodesic error (cm)

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1

Geodesic error (% diameter)

%
co

rr
es

p
o
n
d
en

ce
s

Ablation
Ours

Fig. 3. Comparison with fixed-template ablation experiment. Partial correspondence
error evaluated on FAUST Projections dataset.

Residual Noise. In this experiment, we attempt to emulate various artifacts
commonly found in real depth scans. We corrupt the vertices of each partial
input shape with various degrees of additive white Gaussian noise, with standard
deviations in the range [0-4] cm. The corrupted partial shapes are fed to the
network, together with the full shapes. Averaged reconstruction statistics are
shown in Figure 4 for a Euclidean and the two directional Chamfer distances. As
can bee seen, our method accuracy only slightly declines with the increase of the
noise.

Downsampling. We evaluate the network performance when provided with a
partial shape at a lower resolution. For each partial shape in the test set, we
decimate at random some percentage of the existing vertices. As can be seen in
Figure 5, even under a majority decimation of the vertices, the proposed network
is able to recover well the ground truth shape.
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Fig. 4. Robustness to Noise. Three reconstruction metrics evaluated on completions
originating from corrupted partial shapes with increasing levels of additive white
Gaussian noise. A noise-free reference is marked with a dashed red line.

Projection Angle. Finally, we examine the sensitivity of our network to the
projection angle. We note that due to the different projection angles and poses, it
is not unreasonable that some angles hold a higher degree of information relevant
for reconstruction than others. Ideally, we would like to enable the network a
reliable reconstruction at every angle. We partition the 2000 completions received
over the test set into their corresponding projection angles, and accumulate the
errors over each partition. As seen in Figure 6, the received error distribution is
close to uniform, demonstrating an strong resilience to azimuthal change.

Reconstruction quality w.r. template deformation proximity. We exam-
ine the reconstruction error as increasingly tougher template shapes are provided.
We expect that inserting template shapes that are further from the ground truth
will decrease the reconstruction accuracy due to the added problem complexity.
We sort the 2000 completions by their vertex wise L2 distance RMSE from the
template shape to the ground truth shape, and average the reconstruction errors
over all ten azimuthal angles projected from the ground truth shape. As seen in
Figure 7, the expected result is received, with the network losing accuracy when
we query for more complex deformations.

1.3 Handling Different Types of Partiality

We explored the performance of our network, operating on partial shapes resulting
from different types of single view projections. Specifically, we repeated the
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Fig. 5. Robustness to Downsampling. Three reconstruction metrics evaluated on
completions originating from decimated partial shapes with varying levels of vertex
erasure. A baseline with the evaluation realized with no decimation is marked with a
dashed red line.

training on FAUST dataset, sampling the projections uniformly in the azimuthal
range of [0, 360] and in the elevation range of [−90, 90]. This sampling produced a
grid of 10 azimuthal and 11 elevation angles, resulting in 110 different projections
per pose. Remarkably, this facilitated an improvement of 10 %, on the solely
azimuthally projected test-set reported in the main paper, reducing the error
from 2.94 to 2.64 cm. When extending the test-set to infer on all 110 projections,
we report an error of 2.78cm, an improvement of 5.4% on a more challenging
test-set. We hypothesize this improvement stems from a higher robustness due
to the increased data augmentation.

2 Additional Visualizations

Here we provide additional reconstructions that were not included in the main
paper in order to save space. Figure 8 and Figure 9 visualize our network
predictions for FAUST Projections and AMASS Projections datasets, respectively.

3 Non-Rigid partial correspondence

Figure 10 visualizes the dense correspondence between the input partial and
full shape. As explained in the paper, we achieve this by using the network
reconstruction as a proxy; For every point in the partial shape we calculate the
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Fig. 6. Robustness to Projection Angle. Three reconstruction metrics evaluated
on different groups of the test-set, partitioned by the projection angle. We note a close
to uniform distribution over the different angles, attributing to a azimuthal invariancy.

nearest neighbor point in the reconstruction allowing us a recovery of a mapping
between the partial shape to the reconstructed shape, which is by construction
also the mapping between the part and the full input shape. In Section 4.4 of
the paper we evaluated the predicted correspondence numerically for FAUST
Projections and AMASS Projections datasets, providing geodesic error graphs
for both, in Figure 5 and Figure 6, respectively. For completion, we show the
results also qualitatively here.
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Fig. 7. Euclidean distance as a function of pose proximity. Depiction of the
reconstruction error received as a function of the vertex to vertex L2 distance RMSE of
the template shape from the ground truth shape. Each dot represents a pair of template
and ground truth shapes with the free variable being the distance RMSE between
them, and the dependent variable a mean over the reconstruction errors received for
the completion with each of the ten azimuthal angles. A linear trend line was fitted to
the resulting points for orientation. As can be expected, the greater the deformation
distance, the harder it is to deform the template shape to best fit the partial shape.
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Fig. 8. Predicted completions, FAUST Projections. Each column shows a com-
pletion for a different subject, while each row provides a different perspective on the
reconstructed 3D model. From left to right: full input shape Q, input part P , predicted
completion Fθ(P,Q)(Q), ground truth completion R.
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Fig. 9. Predicted completions, AMASS Projections. Each column shows a com-
pletion for a different subject, while each row provides a different perspective on the
reconstructed 3D model. From left to right: full input shape Q, input part P , predicted
completion Fθ(P,Q)(Q), ground truth completion R.
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figures/correspondence_merged.jpg

Fig. 10. Non-Rigid partial correspondence. Left and right columns show the dense
correspondence for FAUST Projections and AMASS Projections, respectively. From
left to right: full input shape Q, our network completion Fθ(P,Q)(Q) and partial input
shape P . Corresponding points are indicated by the same color.


