SumGraph: Video Summarization via Recursive
Graph Modeling

-Supplementary Materials-

Jungin Park'*, Jiyoung Lee'*, Ig-Jae Kim?, and Kwanghoon Sohn'**
! Yonsei University, Seoul, Korea
2 Korea Institute of Science and Technology(KIST), Seoul, Korea
{newrun, easy00, khsohn}@yonsei.ac.kr
drjay@kist.re.kr

In this document, we provide more details of SumGraph and more experi-
mental results on SumMe [2] and TVSum [7] dataset.

1 Network Architecture

Our networks are split into three parts: initial graph construction network to
construct an initial graph using features from the pretrained feature extractor,
recursive graph refinement network to obtain the initial graph by recursively
estimating and refining the graph, and summarization network to perform the
node classification. Although we use three graph convolution layers in the re-
cursive graph refinement network, we can use fewer or more additional graph
convolutional layers. The overall architectures of SumGraph corresponding to
the number of graph convolution layers in the recursive graph refinement net-
work are shown in Table 1.

2 Implementation and Training Detalils

Features. Following prior works [10, 11, 6], we uniformly sampled frames in the
video to 2 fps. And then, we fed sampled frames into the pretrained GoogleNet [8]
to extract the features from the pool5 layer. Note that any feature representa-
tion(e.g., C3D [9], I3D [1]) can be used for our model. For the fair comparison
with previous works, we mainly use GoogleNet features.

Groundtruth. The datasets we used in experiments (i.e., SumMe, TVSum,
OVP, and YouTube) provide the groundtruth annotations in a different format.
We record the groundtruth(GT) annotations used during training and testing
for different datasets in Table 2. Following [10,11, 6], we generate the single set
of groundtruth keyframes for each training video from the multiple user anno-
tations. For evaluation on testing videos, we convert the generated summaries
and the groundtruth summaries to the interval-based keyshot summaries [11,
6]. While SumMe dataset provides groundtruth in the form of keyshots, TV-
Sum dataset needs to be converted from keyframe annotations to keyshot-based

* Both authors contributed equally to this work
** Corresponding author

2 Park et al.

1 Layer
Layer [Ch I/0 Input Output
G-convl 1024/1024 X VA
G-cls 1024/2 z" Y

2 Layer
Layer [Ch I/0 Input Output
G-convl 1024/1024 X featl
G-conv2 1024/1024 featl z*
G-cls 1024/2 z" Y

3 Layer
Layer [Ch I/0 Input Output
G-convl 1024/1024 X featl
G-conv2 1024/2048 featl feat2
G-conv3 2048/1024 feat2 VA
G-cls 1024/2 zZ* Y

4 Layer
Layer [Ch I/0 Input Output
G-convl 1024/1024 X featl
G-conv2 1024,/2048 featl feat2
G-conv3 2048/2048 feat2 feat3
G-conv4 2048/1024 feat z*
G-cls 1024/2 z" Y

5 Layer
Layer [Ch 1/0 Input Output
G-convl 1024/1024 X featl
G-conv2 1024/2048 featl feat2
G-conv3 2048/4096 feat2 feat3
G-conv4 4096/2048 feat3 feat4
G-convh 2048,/1024 featd z*
G-cls 1024/2 z" Y

Table 1. Network configuration of SumGraph corresponding to the number of graph
convolutional layers, where ‘G-conv’ and ‘G-cls’ denote graph convolutional layers in
the recursive graph refinement network and the summarization network, respectively.

summaries. To generate keyshot-based summaries, we perform the procedure in
[11] including the following steps: 1) apply KTS [5] to generate temporal seg-
ment in the forms of the disjoint intervals; 2) compute the average score for each
segment and assign the score to frames in the interval; 3) apply the knapsack
algorithm [7] to select frames so that the length of the keyshot groundtruth is
below a certain threshold. In our experiments, the annotations are represented
as a binary vector (0 for background and 1 for keyframe) with the number of
elements is equal to the number of frames in a video.

Training and Optimization. While our SumGraph can be trained with the
various lengths of videos, we uniformly sample frames from each video with a

SumGraph: Video Summarization via Recursive Graph Modeling 3

Dataset # annotations Training GT Testing GT
SumMe 15-18 frame-level scores keyshots
TVSum 20 frame-level scores frame-level scores
OVP 5 keyframes -
YouTube 5 keyframes -

Table 2. The format of groundtruth(GT) in training and testing phase for different
datasets. In training, we convert from multiple user frame-level annotations to the
single set of the keyframes for SumMe [2] and TVSum [7] datasets. In testing, we
convert frame-level scores to the interval-based keyshot annotations for TVSum dataset
following [11]. Note that OVP and YouTube datasets are not used in the testing phase.

of iterations 0 1 2
of layers Precision Recall F-score Precision Recall F-score Precision Recall F-score
1 20.1 25.3 224 33.3 34.3 338 40.1 40.8 404
2 21.3 27.7 241 33.6 33.5 336 41.5 425 420
3 24.7 30.1 27.1 34.3 35.5 349 41.0 44.8 428
4 23.2 27.8 253 35.1 376 36.3 43.6 44.6 44.1
5 22.6 25.0 23.7 33.5 371 352 42.5 425 425
of iterations 3 4 5
of layers Precision Recall F-score Precision Recall F-score Precision Recall F-score
1 45.1 49.5 472 48.8 49.9 49.3 48.4 50.0 49.2
2 46.6 49.9 48.2 50.3 51.0 50.7 51.2 52.9 521
3 50.6 52.3 514 50.9 52.0 514 52.2 52.9 52.9
4 49.2 53.2 51.1 52.0 523 521 50.9 53.3 52.1
5 49.5 51.8 50.6 50.3 52.1 51.2 51.2 52.5 519

Table 3. The quantitative results on SumMe [2] dataset in terms of precision, recall,
and F-score corresponding to the number of graph convolution layers and the number
of iterations.

fixed temporal length of T" = 320 for training to learn the parameters in the
networks with mini-batch. During training, we set the batch size to 5 and learn
all parameters of our model using Adam optimizer [3] with PyTorch [4]. The
learning rate is set to 1072 and decayed by a factor of 0.1 for every 20 epoch. We
implement SumGraph on an Intel Core i7-7700 CPU with two NVIDIA Titan
RTX GPU.

3 More Results

Qualitative Results. We show the more qualitative examples of selected keyframes
using SumGraph on SumMe. We visualize the groundtruth importance scores
and selected keyframes produced by SumGraph. For visualization of generated
summaries, we sample 6 frames from the selected keyframes and display below
the summary result, as shown in Fig. 1. In summary result, the marked red bars

on brown backgrounds are the selected frames as summary.

4 Park et al.

of iterations 0 1 2
of layers Precision Recall F-score Precision Recall F-score Precision Recall F-score
1 30.1 31.7 309 44.1 39.9 419 54.3 52.1 53.2
2 32.9 32.0 324 43.3 42.6 43.0 59.7 55.5 57.5
3 36.5 324 343 46.2 40.1 429 57.1 56.4 56.7
4 35.8 32,5 34.1 46.8 449 458 59.7 556 57.6
5 33.6 311 323 44.3 44.0 44.2 55.4 55.1 55.2
of iterations 3 4 5
of layers Precision Recall F-score Precision Recall F-score Precision Recall F-score
1 58.4 55.7 57.0 60.1 58.8 59.4 60.3 59.1 59.7
2 62.1 61.1 61.6 64.5 624 634 60.8 60.4 60.6
3 64.3 63.5 639 64.3 64.0 64.1 64.5 64.1 64.3
4 63.4 63.2 63.3 63.5 61.9 62.7 64.6 61.5 63.0
5 63.3 61.7 625 634 632 633 64.8 632 64.0

Table 4. The quantitative results on TVSum [7] dataset in terms of precision, recall,
and F-score corresponding to the number of graph convolution layers and the number
of iterations.

Fig. 1. Qualitative results on the SumMe benchmark [2]: (a) Video number 22, (b)
Video number 5. Brown bars show frame level user annotation. Red bars are selected
as subset shots. Best viewed in color.

Ablation Study. We provide more quantitative results corresponding to the
number of graph convolution layers in the recursive graph refinement network
and the number of iterations on SumMe and TVSum datasets in Table 3 and
Table 4. Note that the results with respect to iteration 0 represent the results

SumGraph: Video Summarization via Recursive Graph Modeling 5

F-score: 0.322

(a) Iteration 0

F-score: 0.368
B l n ol & .

(b) Iteration 1
F-score: 0.423

- i il b - N

(c) Iteration 2

. F-score: 0.466
Hl & -

(d) Iteration 3

F-score: 0.487
i . M —

(e) Iteration 4

F-score: 0.503

=y St

(f) Iteration 5

Fig. 2. Qualitative results for video number 2 on TVSum benchmark [7] according to
the number of iteration. Brown bars show frame level user annotations, and red bars
are selected as subset shots.

without any graph refinement. As mentioned in the main text, the summarization
performance progressively converges as the number of iterations increases. The
qualitative result for video number 2 on TVSum corresponding to the number
of iterations is shown in Fig. 2. Brown bars show frame level user annotations,
and red bars are selected subshots in every iteration. The result shows not only
the summarization performance is improved, but also more informative parts of
the video are selected as the number of iterations increased.

To investigate the efficiency of our model, we compare the number of pa-
rameters and the runtime with [6] in Table 5. As a baseline network, we used
three graph convolution layers for the recursive graph refinement network and
one graph convolution layer for the summarization network, and set the num-
ber of iterations for the graph refinement to five. For inference, while [6] takes
about 84ms using about 116.5M network parameters for a 320 second video,
our model takes 13ms using 5.5M network parameters under same settings. This

6 Park et al.

Method # of parameters (M) runtime (ms)
Rochan et al. [6] 116.5 84
Ours 5.5 13

Table 5. Comparison between [6] and our model in terms of the number of parameters
and runtime.

of iterations 0 1 2 3 4 5
runtime (ms) 4 6 7 9 11 13
F-score (%) 343 429 567 639 641 64.3

Table 6. Runtime and the summarization performance analysis for various numbers
of iterations on TVSum [7] dataset.

result indicates that SumGraph surpasses [6] in terms of memory efficiency and
summarization performance.

In addition, we evaluated the runtime and the summarization accuracy for
different numbers of iterations. As shown in Table 6, our model with five iter-
ations spent about three times of runtime more than the case of without any
refinement, but achieved a performance improvement of 30%.

SumGraph: Video Summarization via Recursive Graph Modeling 7

References

10.

11.

. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the

kinetics dataset. In: CVPR (2017)

Gygli, M., Grabner, H., Riemenschneider, H., Gool, L..V.: Creating summaries from
user videos. In: ECCV (2014)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: ICLR
(2015)

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z.,
Desmaison, A., Antiga, L., Lerer, A.: Automatic differentiation in pytorch (2017)
Potapov, D., Douze, M., Harchaoui, Z., Schmid, C.: Category-specific video sum-
marization. In: ECCV (2014)

Rochan, M., Ye, L., Wang, Y.: Video summarization using fully convolutional
sequence networks. In: ECCV (2018)

Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: Tvsum: Summarizing web videos
using titles. In: CVPR (2015)

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR (2015)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotem-
poral features with 3d convolutional networks. In: ICCV (2015)

Zhang, K., Chao, W.L., Sha, F., Grauman, K.: Summary transfer: Examplar-based
subset selection for video summarization. In: CVPR (2016)

Zhang, K., Chao, W.L., Sha, F., Grauman, K.: Video summarization with long
short-term memory. In: ECCV (2016)

