SLIP: Self-Supervision Meets Language-Image Pre-training

Norman Mu, Alexander Kirillov, David Wagner, Saining Xie ;

Abstract


"Recent work has shown that self-supervised pre-training leads to improvements over supervised learning on challenging visual recognition tasks. CLIP, an exciting new approach to learning with language supervision, demonstrates promising performance on a wide variety of benchmarks. In this work, we explore whether self-supervised learning can aid in the use of language supervision for visual representation learning with Vision Transformers. We introduce SLIP, a multi-task learning framework for combining self-supervised learning and CLIP pre-training. After pre-training, we thoroughly evaluate representation quality and compare performance to both CLIP and self-supervised learning under three distinct settings: zero-shot transfer, linear classification, and end-to-end finetuning. Across ImageNet and a battery of additional datasets, we find that SLIP improves accuracy by a large margin. We validate our results further with experiments on different model sizes, training schedules, and pre-training datasets. Our findings show that SLIP enjoys the best of both worlds: better performance than self-supervision (+8.1% linear accuracy) and language supervision (+5.2% zero-shot accuracy). Our code is available at: github.com/facebookresearch/SLIP."

Related Material


[pdf] [supplementary material] [DOI]