Prompting Visual-Language Models for Efficient Video Understanding
Chen Ju, Tengda Han, Kunhao Zheng, Ya Zhang, Weidi Xie
;
Abstract
"Image-based visual-language (I-VL) pre-training has shown great success for learning joint visual-textual representations from large-scale web data, revealing remarkable ability for zero-shot generalisation. This paper presents a simple but strong baseline to efficiently adapt the pre-trained I-VL model for video understanding tasks, with minimal training. Specifically, we propose to optimise a few random vectors, termed as continuous prompt vectors, that convert video-related tasks into the same format as the pre-training objectives. In addition, to bridge the gap between static images and videos, temporal information is encoded with lightweight Transformers stacking on top of frame-wise visual features. Experimentally, we conduct extensive ablation studies to analyse the critical components. On ten public benchmarks of action recognition, action localisation, and text-video retrieval, across closed-set, few-shot, and zero-shot scenarios, we achieve competitive or state-of-the-art performance to existing methods, despite optimising significantly fewer parameters. Due to space limitation, we refer the readers to the arXiv version at https://arxiv.org/abs/2112.04478."
Related Material
[pdf]
[supplementary material]
[DOI]