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1 Appendix A: Result Visualization

Here we provide more visual qualitative result of superior single-view multi-
object Shape Reconstruction, 6D pose and size estimation and Appearance Re-
construction done using our technique, ShaPO. Our method shows very promis-
ing results for superior 6D pose and size estimation compared to the strong base-
line NOCS [9] (Figure 1). Our network also performs more accurate shape and
texture reconstruction compared to the strong-baseline, CenterSnap [2] (Figure
3), which only performs shape reconstruction (i.e. meshes obtained through sur-
face reconstruction of coarse pointcloud predictions i.e. 2048 points). We also vi-
sualize the improved pose estimation performance of our method after inference-
time optimization (Figure 2). Figure 5 also shows zero-shot generalization results
on HSR robot i.e. no-retraining was done.
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Fig. 1: ShAPO Qualitative 6D pose estimation comparison with NOCS: Our
method’s 6D pose estimation in comparison to the best pose estimation configuration
i.e. 32-bin classification on the NOCS dataset. We show accurate 3D bounding box
predictions and 6D pose and size estimation of multiple novel object categories than
the strong baseline.
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Table 1: Texture quality ablation. We compare texture quality using the PSNR
metric between three modalities: network prediction, optimization, and fine-tuning of
the ty network.

‘ Inference Optimization Fine-tuning

PSNR | 11.41 20.64 24.32

2 Appendix B: Texture Quality Ablation on NOCS
Real275

In this section, we provide an ablation on the output texture quality on NOCS
Real275 test-scenes. In particular, we compare the direct network texture predic-
tion with the result after our differentiable optimization, and the result after our
differentiable optimization with additional fine-tuning of the ty network weights.
We use the learning rate of 10~° for the weight fine-tuning. Table 1 demonstrates
that our optimization procedure almost doubles the texture quality in terms of
PSNR. Additional fine-tuning of the network weights allows us to improve tex-
ture reconstruction results even further. For qualitative results see Figure 4.
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Fig.2: ShAPO Qualitative Comparison of 6D pose and size Inference and
Optimization: Our method’s 6D pose and size comparison shown on 3 novel scenes
in NOCS Real275 test-set. After optimization, our method predicts accurate bounding
boxes as shown by the bottom row in the figure.

3 Appendix C: Network Architecture details and
Training

Our backbone is implemented as Feature pyramid network [3] with takes as input
Resnet [1] outputs at various spatial resolutions and adds lateral connections
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Fig.3: ShAPO Qualitative Reconstruction Comparison with CenterSnap [2]:
The figure qualitatively shows the superior reconstruction performance of our method
with the strong state of art i.e. CenterSnap [2] on novel scene in NOCS Real275 test-
set. Our method produces finer reconstruction surfaces both in terms of shape accuracy
and textures with details such as mug-handle and camera lens.
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Fig. 4: ShAPO Qualitative Inference, Optimization and Finetuning Compar-
ison: The figure qualitatively shows the inference, latent-only optimization and latent
with appearance network optimization. Note that as noted earlier, we let the appear-
ance network weights to change to allow for finer level of reconstruction.
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Fig. 5: Real-world generalization experiments on HSR robot

with a top-down pathway. Each of our specialized heads comprises of a series
of convolution layers (i.e. up-sampling stages), as described in [4] with the final
prediction layer comprising of a 1 x 1 convolution and 4z bilinear up-sampling.
We train the combined backbone and heads network for 30 epochs with early
stopping based on the performance on the validation set. We use a learning rate
of 6e~* and a polynomial weight decay with a co-efficient of le™*. Our texture
network tgy is a Siren-based [8] 6-layer MLP consisting of 512-dimensional hidden
layers and with wgy set to 128. Siren networks demonstrate superior results at
representing fine details when compared to standard ReL.U-based MLPs thanks
to the used periodic activation functions. After we train the shape MLP (G)
and texture MLP (ty), we freeze the networks for single-shot supervision at the
Gaussian center locations. During inference, we use the frozen networks (G)
and (t9) to optimize for shape, pose, size and appearance latent codes.

4 Appendix D: Related works

Our method, ShAPO, relates to multiple key areas in 3D scene reconstruction,
object understanding and pose estimation. In essence, we provide more qual-
itative and quantitative comparison to four related works i.e. CenterSnap [2],
MeshSDF [7], Occ-Nets [5] and TextureFieldd [6].

CenterSnap [2]: In particular, Figure 3 qualitatively shows the superior re-
construction quality of our method compared to the strong state of the art i.e.
CenterSnap [2]. Furthermore, Our shape representation (implicit SDF vs point-
clouds in CS), addition of texture network and texture codes, differen- tiable
iso-surface extraction, optimization and joint shape, appearance, and textures
warping all make our work sig- nificantly different from CS. While our work does
share a common backbone with CS, being able to leverage the test- time obser-
vations to warp the latent shape, appearance, and poses of the model beyond
network inference is precisely our contribution. Hence, our technique is able to
model large intra-class variations (25.4% and 7.1% absolute improvement in 6D
pose) over CS (cf. Thl 2 in the main text).
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Table 2: Quantitative Comparison with MeshSDF We compare the computa-
tional time to extract surface for our method, ShAPO, in comaprison to MeshSDF [7]

# Points ‘ 704 3228 13023 56041 224680
MeshSDF 0.017 s 0.032 s 0.091 s 0.654 s 4.396 s
ShaPO 0.010 s 0.013 s 0.016 s 0.025 s 0.093 s

MeshSDF [7] pro- poses a solution to extracting surface meshes while preserv-
ing end-to-end differentiability. We instead extract dense surface point clouds
using our octree-based sampling abstaining from the expensive Marching Cubes
computation at every optimization step. As shown in the Table 2, MeshSDF’s
implementation doesn’t scale well to higher resolutions, whereas our technique
does, achieving accurate fine-grained reconstruction with minimal runtime. Ad-
ditionally, our method also supports appearance optimization.

Occupancy Networks [5]: We extract the object’s surface using a differen-
tiable 0-isosurface projection which is a crucial component that allows us to
perform shape/pose/appearance optimization. Conversely, the procedure from
Occupancy Networks [5] is applied once to extract the object’s surface using
non-differentiable Marching Cubes.

Texture Fields (TF) [6] trains a single network per category making it difficult
to model a large number of categories. We model multiple categories through
our novel texture code (z,) unique to each object in our database of shape
and texture priors using a single network (cf. supplementary video). Second, TF
does not consider test-time optimization, whereas we propose a novel test-time
warping of textures by updating z;., to fit unseen object appearances. Lastly,
TF reconstructs one model per image whereas we infer multiple objects from a
single-view RGBD.
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