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In this supplementary, we elaborate on the implementation details for our intrin-
sic neural fields (?7?), discuss the details of our experiments (??), show that our
method is not overly initialization-dependent (??), and, finally, provide further
theoretical results (77).

The high-resolution intrinsic neural texture field on the human model that
we showcase in Fig. 1 is available as a textured mesh as an .obj in the supple-
mentary and on sketchfab®. We would like to note that the small texture seams
are not due to our method, but due to the conversion from our network to a uv
texture map. Intrinsic neural fields do not possess the discontinuities which are
present in the uv map. The texture is created by an inverse uv lookup of each
texel and an evaluation of the intrinsic neural field at the corresponding point on
the manifold. We provide the textured mesh as a convenient possibility for quali-
tative inspection with current tools but it is never used to evaluate the proposed
method qualitatively or quantitatively in the paper. We also provide a qualitative
comparison of a reconstruction of a specular object with Meshroom?, a free pho-
togrammetry software. In this case we used the 3D geometry from Meshroom but
replaced the texture with view-dependent results from our method. The video
can be found here: https://www.youtube.com/watch?v=L8Q6gp2d7nU.

A Implementation Details

For our method, we calculate the eigenfunctions of the Laplace-Beltrami operator
of a given triangle mesh once by solving the generalized eigenvalue problem for
the first d eigenvalues using the robust Laplacian by Sharp and Crane [?]. If the
given geometry is a pointcloud, we create a local triangulation around each point
which lets us perform a normal ray-mesh intersection. Additionally, the robust
Laplacian [?] supports calculating eigenfunctions on pointclouds.

Depending on whether the viewing direction is taken into account, we use the
respective network architectures shown in 77 for our experiments. Both networks
take as input a point p from the surface of the discrete 2-manifold embedded
into its d eigenfunctions. Since p might not be a vertex, we linearly interpolate
the eigenfunctions of the vertices v;, v;, and vy, which span the triangle face

3 https://skfb.ly /otvFK
* https://alicevision.org/
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where p is located, using the barycentric coordinates. For embedding the unit
viewing direction d € R3, we use the sine/cosine positional encoding [?].

During the training, we randomly sample preprocessed rays from the whole
training split. We use a batch size of 4096 across all our experiments. As op-
timizer, we use Adam with the default parameters (8; = 0.9, 82 = 0.999,
e = 1078). Our loss function is the mean L1 loss over a batch of randomly
sampled rays B

Ly = B Z 1Fo(P) = cgi(P)llx (11)
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where Fy is an intrinsic neural field and cq(p) is the ground-truth RGB color.

B Experimental Details

B.1 Modification of NeuTex

In order to make the comparison between our method and NeuTex [?] fair, we
adapt the latter one to the setting of a given geometry. Since the geometry is
known in our experimental setup, we remove the latent vector used for learning
a representation of the geometry. Additionally, we remove the volume density
from NeuTex because our experiments are focused on learning a function on
the surface of a given 2-manifold. Furthermore, we do not incorporate view
dependence in the experiments of Sec. 5.1. Hence, we use the the provided, non-
view dependent MLP architecture for Fiey from the official Github repository®.
We, additionally, add a sigmoid non-linearity to the last linear layer to ensure
that the RGB color values are in [0, 1]. The overall architecture is shown in ?7?.

Due to the higher complexity of additionally learning a mapping between the
surface of the manifold and the uv-space, we pretrain the mapping networks Fy
and F.l. In each training iteration, we randomly sample N = 25,000 points from
the sphere and map them into the 3D world coordinate space of the geometry
using F;'. Then, we map the predicted 3D world points back onto the sphere
using F,,. We train for 200, 000 iterations using the Adam optimizer with default
parameters (81 = 0.9, B2 = 0.999, ¢ = 1078) and a learning rate of 0.0001. The
loss function is a combination of the mean Chamfer distance Lchamfer between the
predicted 3D world points and the vertices of the mesh and the mean 2D-3D-2D
cycle loss between the sampled and predicted uv-points u;

N—
Loe = % 3 IR () — il (12)
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After the pretraining, we employ a combination of the rendering loss and
the 3D-2D-3D cycle loss as the loss function for learning a surface function on a

® https://github.com/fbxiang/NeuTex
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Table 4: Hyperparameter table: Texture reconstruction.

Hyperparameter Value

optimizer Adam with default parameters (81 = 0.9, B2 =
0.999, e = 107%)

learning rate 0.0001

batch size 4096

image size 512x512

random seed 0

eigenfunctions 1 to 256, 1794 to 2304, 3841 to 4096 where 0 is

the constant eigenfunction

epochs 1000

given geometry:

1 _
Lneutex = @ Z | Frex(Fuv(P)) — cgt||§ + ”Fuvl(FuV(p)) - p||§ (13)
peB

For the experiment in Sec. 5.1, we, additionally, increase the embedding size
of the sphere coordinates to 1023 for NeuTex, so that it is similar to the other
methods. For the sine/cosine positional encoding, we select the frequency bands
from [0, 6] linearly spaced because it covers a range that is similar to RFF with
o=28.

B.2 Texture Reconstruction

In this experiment, we use the same cat® and human” mesh as in [?]. The 2D
views of the meshes are rendered using Blender and blenderproc [?]. For the
experiments in Sec. 5.1 and Sec. 5.2, we randomly render 5 training, 100 valida-
tion, and 200 test 512x512 views. The training views are visualized in ??7. The
hyperparameters are given in 77?. Further qualitative results for Sec. 5.1 can be
found in ??7. The human shown in Fig. 1 was trained using a 4096 x4096 high-
resolution dataset. It consists of 20 training, 20 validation, and 20 test views
that were randomly generated. All training views are visualized in ??7. In 77 the
hyperparameters for the high-resolution human are shown.

5 https://free3d.com/3d-model/cat-v1-522281.html
" https://www.turbosquid.com/3d-models/water-park-slides-3d-max /1093267
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Table 5: Hyperparameter table: High-resolution texture reconstruction.

Hyperparameter Value

optimizer Adam with default parameters (51 = 0.9,
B2 =0.999, e = 107%)

learning rate 0.0001

batch size 4096

image size 4096 x 4096

random seed 0

eigenfunctions 1 to 4096 where 0 is the constant eigenfunction

epochs 500

B.3 Discretization-agnostic Intrinsic Neural Fields

We use the same datasets for the cat and human as in Sec. 5.1 but generate
different discretizations of the meshes with the scripts from the Github project®
by Sharp et al. [?]. The hyperparameters can be found in ??. The scripts and
the meshes will be released together with the code.

B.4 Intrinsic Neural Field Transfer

For the neural texture transfer, we train an intrinsic neural field on the cat
from Sec. 5.1 with the hyperparameters shown in ??. Since the input to our
method is only the first d LBO eigenfunctions, we can reuse the network on the
cat on other shapes without retraining as long as we know how to transfer the
eigenfunctions. This is exactly what functional maps [?] do. We use the method
of [?], which works with both isometric and non-isometric pairs, to calculate a
correspondence P between the cat C and a target 7, and obtain the functional
map by projecting C' = @;—P@c. Instead of using the eigenfunctions @4 of the
target shape directly, we use @7C' as input to the network.

B.5 Real-world Data and View Dependence

For experiments with real-world data, we select the BigBIRD dataset [?]. 77
shows quantitative results on ten instances and the main paper contains qualita-
tive results on the objects 'detergent’ and 'cinnamon toast crunch’. The dataset
provides images from different directions, foreground-background segmentation
masks, camera calibration, and a reconstructed mesh of the geometry of each

8 https://github.com/nmwsharp/discretization-robust-correspondence-benchmark
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Table 6: Hyperparameter table: Texture transfer.

Hyperparameter Value

optimizer Adam with default parameters (81 = 0.9, B2 =
0.999, e = 107%)

learning rate 0.0001

batch size 4096

image size 512x512

random seed 0

eigenfunctions 1 to 512 where 0 is the constant eigenfunction

epochs 500

object. The provided meshes and the object masks do not align well, which can
cause color bleeding from the background into the reconstruction. Hence, we
improve the masks using intensity thresholding and morphological operations.
Specifically, potential background pixels are identified based on their intensity
due to the mostly white background. They are removed if they are close to the
boundary of the initial mask. Finally, a small margin of the mask is eroded to
limit the number of false positive mask pixels. This process could be replaced
by a more advanced method for a large-scale experiment on real-world data. For
both objects, we train our method on 60 evenly-spaced views from a 360 degree
perspective. The view used for qualitative comparison is centered between two
training views. The model for this experiment implements the view-dependent
network architecture visualized in ??7 and uses the hyperparameters shown in
?7?7. We will release the preprocessing code and the training data used in this
experiment along with the final publication.

C Initialization Dependence of Intrinsic Neural Fields

In order to test the dependence of our method on the initialization, we repeat
the experiment from Sec. 5.1 with different seeds. The results can be found in
??. Our method has a relative standard deviation of roughly 1% for DSSIM and
LPIPS and only about 0.2% for PSNR, which shows that intrinsic neural fields
are not overly initialization-dependent.

D Theory

In this section, we provide further details regarding the theory of intrinsic neural
fields. In ?? we demonstrate that the composed neural tangent kernel (NTK) can
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Table 7: Hyperparameter table: Real-world data and view dependence.

Hyperparameter Value

optimizer Adam with default parameters (81 = 0.9, B2 =
0.999, e = 107%)

learning rate 0.0002

learning rate plateau with factor=0.1, patience=10,

schedule threshold=0.0001

batch size 16384

image size 2848x4272

random seed 0

eigenfunctions 1 to 4096 where 0 is the constant eigenfunction

epochs 500

Table 8: Quantitative evaluation (PSNR) on the first ten objects of the BigBIRD
dataset: 3m high tack spray adhesive, advil liqui gels, band aid clear strips, band aid
sheer strips, blue clover baby toy, bumblebee albacore, campbells chicken noodle soup,
campbells soup at hand creamy tomato, canon ack el0 box, cheez it white cheddar.
We skip ”aunt jemima original syrup” as the mesh in the dataset is broken.

1 2 3 4 5 6 7 8 9 10 avg
Ours 31.8 29.9 32.7 31.9 36.2 30.2 30.4 31.9 34.1 31.8 32.09
RFF 309 285 31.0 299 36.6 28.0 28.8 30.0 33.7 30.7 30.81

be non-stationary for a general 2-manifold. In ?7? the proof for Theorem 1 is given
specifically for 1-manifolds. Finally, in ?? we provide further theoretical results
regarding the NTK, specifically 7?7, which was used in the proof of Theorem 1.

D.1 Theorem 1 on 1-Manifolds

The proof for Thm. 1 only considered n-spheres. Here, we will give a short
proof why it extends to general closed compact 1-manifolds. The proof depends
only on properties of the spherical harmonics which are equivalent to the LBO
eigenfunctions of closed 1-manifolds.

Since the proof in the main paper is for n-spheres, it also holds for circles of
arbitrary radius which are 1-spheres. Notice that all closed compact 1-manifolds
N are isometric to the circle with radius equal to the circumference of N. This
is quite obvious if one considers that the geodesic distance between two points
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Table 9: Initialization dependence for intrinsic neural fields. We retrain our method with
different seeds on the texture reconstruction experiment from Sec. 5.1. The results show
that intrinsic neural fields are not overly dependent on the initialization. Additionally,
the results presented in Sec. 5.1 with seed 0 are not cherry picked.

Seed 0 1 2 3 4 5 6 7 8 9 Avg. Std.

PSNR 1 34.82 34.73 34.80 34.81 34.85 34.95 34.87 35.00 34.77 35.01 34.86 0.262%
cat DSSIM | 0.095 0.096 0.096 0.096 0.093 0.094 0.093 0.092 0.096 0.091 0.094 1.846%
LPIPS | 0.153 0.155 0.156 0.158 0.153 0.158 0.154 0.151 0.156 0.156 0.155 1.305%

PSNR 1 32.48 32.43 32.35 32.47 32.47 32.56 32.50 32.50 32.42 32.42 32.46 0.171%
human DSSIM | 0.121 0.122 0.124 0.121 0.121 0.120 0.121 0.121 0.121 0.122 0.121 0.843%
LPIPS | 0.306 0.309 0.305 0.309 0.305 0.306 0.306 0.301 0.303 0.305 0.306 0.763%

on a curve is simply the arc length between them, the geodesic distance on a
closed 1-manifold is the minimum of both possible arc lengths. Therefore, the
geodesic distances of any 1-manifolds with fixed circumference r is invariant to
its extrinsic embedding, and all 1-manifold with circumference r are isometric
to each other.

The spherical harmonics are the eigenfunctions of the Laplace-Beltrami oper-
ator and those are invariant under isometries. Therefore, the spherical harmonics
and all their properties transfer to general closed compact 1-manifolds and the
proof still holds.

D.2 Neural Tangent Kernel

In this section, we prove 7?7 that was used in the proof of Thm. 1. Additionally,
we briefly discuss the positive definiteness of the NTK. As in the main paper,
we consider the same setting as Jacot et al. [?].

Lemma 1. Let kyrg : R x R® — R be the neural tangent kernel for a mul-
tilayer perceptron (MLP) with non-linearity o. If the inputs are restricted to a
scaled hypersphere ||x|| = r then there holds

knrr(z, ') = hyrg((z,2')), (14)

for a scalar function hyrg : R — R.

Proof. For this proof we adopt the notation of Jacot et al. [?] to simplify following
both papers simultaneously. We give a detailed proof, as this also gives good
insight into the NTK. Let all requirements be equivalent to the ones used for [?,
Prop. 1]. Jacot et al. show that the neural network Gaussian process (NNGP)
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has covariance XI) defined recursively

2O (g, 2"y = ix—'—x' + B2 (15)
no
ST (2,2") = By )N (0,40 (2.2 [0 (W) (0)] + 52 (16)
Y (g, ) XD (x,2)
(L) AN ) )
A (z,2") = (Z(L)(x/7x) Z(L)(x/7x/)) ) (17)

where o : R — R is the non-linearity of the network and f is related to the bias
of the network. We use u = f(z) and v = f(a’) instead of the Gaussian process
notation used in [?]. We prove by induction that X (z,2’) depends only on
z " 2/, which also implies that X(%) (x,z) does not depend on z because z 'z = r2.
For L = 1 this follows directly from the definition. Assume now that for L we
have that X (z, z') depends only on z'’. It directly follows that A (z,z")
and thus 2241 (g, 2’) also only depend on z ' 2/, which is the induction step.
Given the NNGP kernel, the neural tangent kernel (NTK) is given by Theo-

rem 1 from Jacot et al:

oW (x,2") = xW(z,z") (18)
8%"'”(35, x') = @ég) (z, x')Z’(LH)(x, x') + Z(L+1)(x, z') (19)

SED (2,2") = By pyn (0,40 (2,2 [6(w) ()] + B2 (20)
where ¢ is the derivative of the non-linearity. By a similar induction argument to
above we obtain that O (z,2') only depends on 2" z" and hence that ol (z,z)
does not depend on x. In the notation of our ?7 this means that kyrk only
depends on (z,z') and can thus be written as hytk ({(x, 2’)) for a scalar function
hntk : R — R. O

Positive-definiteness of the NTK. In the proof of Theorem 1, we used the fact
that the NTK is positive definite as shown by [?, Prop. 2]. Their proposition is
stated for ||z|| = 1 and the extension to ||z|| = r requires only slight changes,
which we will detail in the following. In the third step of Jacot et al.’s proof when
doing the change of variables to arrive at their Eqn. 1 the following changes

2 n0ﬁ2 + JTTJI/ 2
IE(X,Y)~N(o,2) [o(X)o(Y)] + 58" =f <n052+,2 + 87, (21)
where i : [-1,1] — R is the dual in the sense of [?, Lem. 2] of the function

@ R — R defined by u(z) = o (x\/’rQ/nO +ﬁ2>. Finally, in step 5 of their
proof

/ noB* +1%p
v(zT2') = 52+Z ( 52+r2) . (22)
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Fig.8: Network architecture. We use a similar network architecture as used for
NeRF [?]. A point on the 2-manifold is described by p. The unit ray direction is
represented by d. The notations 7yt and yrr represent the proposed eigenfunction
embedding and the sine/cosine positional encoding [?] respectively. The + sign denotes
concatenation. The second architecture is used in the experiments of Sec. 5.4 while we
use the first architecture in all other experiments.
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Fig.9: Modified network architecture for NeuTex [?]. We remove the volume density
as well as the view dependence enabling NeuTex to learn a simpler setting because the
geometry is known and the textures are diffuse in the experiment of Sec. 5.1. A 3D
coordinate on the sphere representing the uv-space is described by u. The symbol x
is a 3D world coordinate on the surface of the given 2-manifold. The notation for the
sine/cosine positional encoding [?] is yrr. The + sign denotes concatenation.
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Fig. 10: Training views for the cat and human datasets with 5 views used in Sec. 5.1,
Sec. 5.2, and Sec. 5.3.

Fig.11: Training views for the human high resolution dataset. Due to the large size
of the 4096x4096 png images, we converted them to jpg and scaled them down to
1024x 1024 for this figure.
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NENN

(a) NeuTex [?] (b) TF (0=8) [?,7] (c) Ours (d) GT Image

(e) NeuTex [7] (f) TF (o0=8) [?,7] (g) Ours (h) GT Image
Fig. 12: Further qualitative comparisons of unseen views from the texture reconstruc-
tion experiment (Sec. 5.1). All the methods from this figure use an embedding size of
1023. We want to point out that these renderings are not high-quality due to the low
resolution of the training views.
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Fig.13: Non-stationarity of NTKs on a general 2-manifold. We investigate the non-
stationarity of the neural tangent kernels (NTKs) on a general 2-manifold, namely the
cat shown in Fig. 3. Each small square in the image shows the coefficient ¢;; when
projecting the kernel onto the LBO basis: ¢;; = fM fM ¢:(P)k(p,q)¢;(q)dpdg. The
integral is approximated numerically as the area-weighted sum over the vertices. A
stationary kernel as defined in Eqn. 4 would have entries only along the main diagonal
¢ij = ¢;0;5. The composed NTK is non-stationary for all features. We do not consider
this a shortcoming of the proposed intrinsic neural fields because the NTK adapts to
the intrinsic geometry of the underlying manifold as we show in Fig. 3.
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